Types of FPLDs

Type of Base Cell

		Multiplexor	$\begin{aligned} & \text { Look-Up } \\ & \text { Table (LUT) } \end{aligned}$	AND-OR
Programming Method	Antifuse	Actel ACT 1, ACT 2, ACT 3 Quicklogic Crosspoint		
	EPROM			Altera MAX 5000, 7000 (Salcic 2.1) Xilinx EPLD
	SRAM	Plessy	Altera Flex 8000 Flex 10K (Salcic 2.2) Xilinx LCA 2000 3000, 4000 (Salcic 2.3)	

Layout / routing

- Row-based: Actel
- Matrix-based: Altera, Quicklogic, Xilinx

Actel ACT Routing Architecture

Figure 3.3.4. Routing Using Long Vertical Track (LVT)

Figure 3.3.5. Routing Using LVTs in another Column

Figure from Field-Programmable Gate A ray Technology, Trimberger, Kluwer, 1994

Actel ACT Routing Architecture (cont.)

- An Actel FPGA has rows of cells, with horizontal channels between them, and vertical "channels" called columns
- Cell inputs must come from one of the 2 adjacent horizontal tracks (either figure)
- Cell outputs can attach to:
- A dedicated vertical track called the "output stub" (see bottom figure)
■ Output stub spans only two channels above and below the cell
- Long vertical tracks- see top figure, where output goes to LVT instead of its dedicated output segment
- These are vertical segments of varying lengths that can be joined together to form vertical segmented tracks

Actel ACT Routing Architecture (cont.)

Figure from Field-Programmable Gate A ray Technology, Trimb erger, Kluwer, 1994

■ Input segments connect to uncommitted horizontal segment by antifuses

- Horizontal segments connect by antifuses

Vertical segments pass over the cells

Actel Act1

(b)

(c)

$$
\mathrm{F}=(\mathrm{A} \cdot \mathrm{~B})+\left(\mathrm{B}^{\prime} \cdot \mathrm{C}\right)+\mathrm{D}
$$

(d)

Figure from Application-Specific Integrated Circuits, Smith, Addison-W esley, 1997

■ Fairly simple, fine-grained logic module

- Low delay, small area, very flexible
- Implements basic gates, D latches, etc.
- Can implement many functions using Shannon's Expansion Theorem
- Any combinatorial function of 2 inputs
- Almost any function of 3 inputs, many functions of 4 inputs, some functions of up to 8 inputs

■ I/O modules at end of rows \& columns

Actel Act2

Figure from Application-Specific Integrated Circuits, Smith, Addison-W esley, 1997

■ C-module = combinatorial [sic] module

■ S-module = sequential module

■ Note that the timing of a particular logic macro may vary with its implementation

Actel Act2
 (cont.)

- C-module = combinatorial module

- Act2 c-module provides high fan-in

■ Can implement 16 of the 20 four-input gates in the library (Act1 implements 8)
■ Implements 766 distinct combinational functions, including 13\% more four-input macros and 12% more five-input macros than Act1

- Some loss in ability to implement sequential functions
- S-module = sequential module
© C-module plus two latches
- Can provide rising- or falling-edgetriggered D flip-flop, or high- or low-level transparent D latch, with clear
- Can make it look like a c-module by tying C1 to 1 and C2 to 0
- Need two or more s-modules to build J-K or more complex flip-flops

Altera FPLD Overview

■ MAX 5000 (obsolete), $\mathbf{7 0 0 0}$ (in Salcic book), 9000 (newer), 3000 (newest)

- AND-OR cells, EEPROM programming
- 32 to 560 macrocells, approximately equal to 600 to 12,000 usable gates

■ FLEX 8000 (obsolete, in Salcic book), 10K, 6000 (new)

- FLEX = "Elexible Logic Element Matrix̣"
- Look-up-table cells plus embedded array blocks (memory), SRAM programming
- 10,000 to 250,000 gates

- APEX 20K (new)

- MultiCore cells (LUT, product term, embedded memory), SRAM programming
- 100,000 to 1,000,000 gates

Altera MAX 7000 Macrocell

Figure from Altera technical literature

■ A MAX 7000 chip contains 2 to 16 Logic Array Blocks (LABs)

- Each LAB contains 16 macrocells, so a MAX 7000 contains 32 to 256 macrocells

Macrocell has two parts
\square Logic array and product term selection matrix (combinational)

- Programmable register (D, T, JK, SR ff)

Altera MAX 7000 Macrocell
 (cont.)

- Logic array (inside macrocell):

- 36 inputs from programmable interconnect array (PIA)
- Each in true and complemented form
- 5 product terms (pterms) (AND gates)
- Product term matrix selects pterms to send to rest of macrocell
- The sharable expander pterm can also be inverted and fed back around to act as an input to any macrocell in that LAB - "Broadcast" a value within the LAB
- Some or all of the pterms in a macrocell can also be "borrowed" by an adjacent macrocell in that LAB
- These are called parallel expanders
- The output of that macrocell's OR gate is connected to the input of borrower's OR
- One macrocell can have as many as 3 sets (<=5 pterms) of parallel expanders, for a total of up to 20 pterms into its OR

Altera MAX 7000 Macrocell
 (cont.)

■ Product term matrix selects pterms to send to either:
(OR gate - gives SOP form
〕 XOR gate - if " 1 ", inverts the output of the OR gate

- Register control inputs (clear, preset, clock, clock enable)

■ Register:

- Can emulate a D, T, JK, or SR flip-flop
- Can be bypassed to use the macrocell as purely combinational logic

■ Three clocking modes:

- Global clock signal
- Global clock with pterm matrix providing clock enable signal
- Pterm matrix providing clock signal
- Preset and clear from pterm matrix

Altera MAX 7000 Routing

Figure from Altera technical literature

■ Logic Array Block (LAB):

- Contains 16 macrocells (macrocell array), including parallel expanders

- Connects to

Programmable Interconnect Array (PIA) (the 36 inputs described earlier)

- I/O control block (off-chip connections)

Altera MAX $\mathbf{7 0 0 0}$ Routing (cont.)

- I/O Control Block
- I/O pins connect to

■ I/O control blocks
■ Programmable Interconnect Array (PIA)
[I/O control block contains the circuitry necessary to program an I/O pin as either:

- Dedicated output
- Dedicated input (some devices)
- Bidirectional pin (some devices)

■ Programmable Interconnect Array (PIA)

- Connects any source signal to any destination the PIA connects to

■ Sources: dedicated inputs, bidirectional I/O pins, and macrocell outputs

■ Layout is fixed, so delay is predictable

MAX Devices

MAX 7000
－ 5.0 volt MAX 7000
－600－10，000 gates， 200 MHz ，44－256 pins
－ 3.3 volt MAX 7000A， 2.5 volt MAX 7000B
〕 Many packaging options \＆speed grades
■ MAX 9000 （newer）
（ 6，000－12，000 gates， 145 MHz ， 84－356 pins

〕 Only＂bigger＂devices，5v only，fewer speed grades

■ MAX 3000A（newest）

［ 600－10，000 gates， 192 MHz ， 34－208 pins

〕 Only＂smaller devices＂， 3.3 v ，several speed grades
－Lowest price per macrocell

