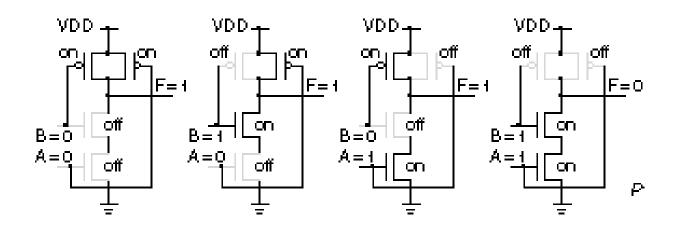
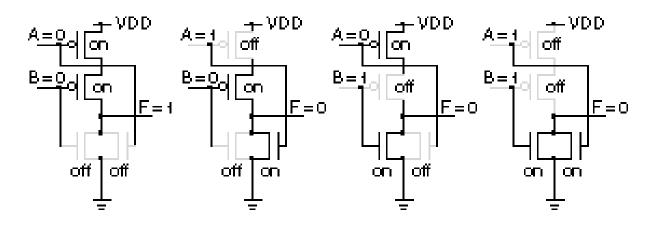

CMOS Transistor Notation


- A CMOS transistor has 3 terminals, called the *gate*, *source*, and *drain*
- V_{AB} is the voltage between nodes A and B in a circuit
- Positive power supply (power source)
 - In TTL, written V_{CC} (usually written VCC)
 - In NMOS and CMOS, written V_{DD} (also VDD)
- Negative power supply (power sink)
 - In TTL, written GND ("ground")
 - In NMOS and CMOS, sometimes written V_{SS} (also VSS)
- CMOS uses positive logic: VDD is logic "1", VSS is logic "0"


CMOS Transistors as Switches

CMOS NAND and NOR Gates

- Use two transistors to make a CMOS inverter (as shown on previous slide)
- Use four transistors to make a CMOS
 2-input NAND gate
 - Rule of thumb: 1 gate = 4 transistors

IC Fabrication Technologies (Implementing an Inverter)

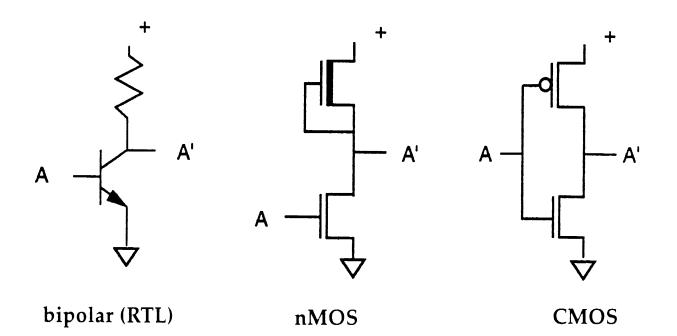


Figure from Modern VLSI Design, Wolf, Prentice Hall, 1994

- Bipolar transistor & resistor (fastest)
- NMOS n-channel depletion mode transistor (top) & n-channel enhancement mode transistor (bottom)
- CMOS p-channel (lowest power) enhancement mode transistor (top) & n-channel enhancement mode transistor (bottom)

Cross-Section of an N-Channel Enhancement Mode MOS Transistor

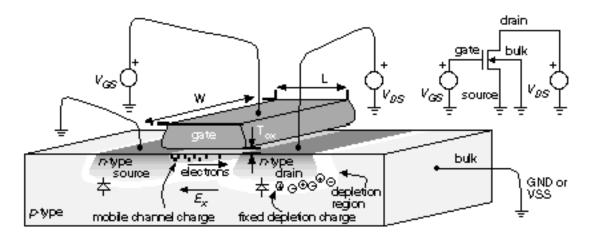
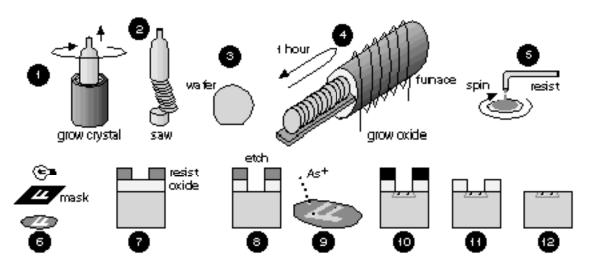


Figure from *Application-Specific Integrated Circuits*, Smith, Addison-Wesley, 1997

- Base is silicon substrate (bulk, well, tub) that's been doped with p-type impurities (full of positively-charged holes)
 - Two *diffusion* areas heavily doped with ntype impurities (full of negatively-charged *electrons*) form the *source* and *drain*
 - Transistor action takes place at the *channel*, connecting the source and drain
- A very thin layer of silicon dioxide (SiO₂), called the *gate oxide*, insulates the *gate*, made of polysilicon, from the channel


Operation of an N-Channel Enhancement Mode MOS Transistor

- Works as a switch gate-to-source voltage regulates the amount of current that can flow between drain and source
 - When V_{GS} = 0, the p-type channel is full of holes, and the n-type source and drain contain *electrons*
 - The p-n junctions at source and drain form diodes in opposite directions, so no current flows between source and drain
 - As V_{GS} rises above 0, the few n-type impurities that are present in the p-type channel start to attract electrons
 - The electrons migrate toward the (positively charged) gate, but are stopped by the gate oxide, so collect at the top of the channel
 - When V_{GS} rises to the *threshold voltage* (V_t), enough electrons have collected to form an *n-channel inversion layer*, which allows electrons to flow from source to drain (current flows from drain to source)

Operation of an N-Channel Enhancement Mode MOS Transistor (cont.)

- N-channel vs. p-channel
 - N-channel: V_{GS} and V_{DS} both positive, gate and source are n-type (electrons), substrate & channel is p-type (holes), when V_{GS} >> V_t electrons accumulate in channel and flow from source to drain, current flows from drain to source
 - P-channel: V_{GS} and V_{DS} both negative, gate and source are p-type (holes), substrate & channel is n-type (electrons), when V_{GS} >> (more negative) than V_t holes accumulate in channel and flow from source to drain, current flows from source to drain
- Current proportional to W/L of transistor
 - Length (L) = parallel to current flow
 - As W increases, more current can flow
 - As L increases, less current flows

IC Fabrication

- 1. Start with silicon (Si), refined from quartzite, dope it with p- or n-type impurities, and melt it at 1500°C
- 2.&3. Draw out a single crystal (6" or 8"), saw it into thin (600µm) *wafers*, polish one side, and grind down an edge or two
- 4. Batch of wafers (a *wafer lot*) is placed on a *boat* and put in a furnace to grow a layer (1000 Å) of silicon dioxide (SiO₂) (called the *oxide*)

IC Fabrication (cont.)

- IC fabrication process uses a series of masking steps to create the layers that form the transistors etc. on the chip
- 5. A thin layer (1 μ m) of liquid photoresist (*resist*) is spun onto each wafer, and it is baked at 100°C to harden the resist
- 6. The wafer is partially exposed to ultraviolet light through a *mask*, which polymerizes the exposed areas; the polymerized part is then removed using an organic solvent
- 7. The exposed oxide is *etched* away, making the oxide match the mask
- 8. The exposed silicon substrate is doped with appropriate ions by an *ion implanter*
- 9. & 10. Resist and oxide are removed

Fabricating a CMOS Transistor

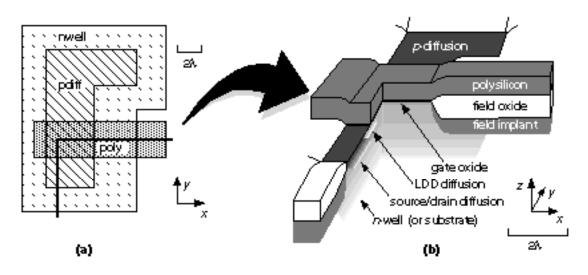


Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

- Continuing the fabrication process:
 - Polycrystalline silicon (*poly*) is deposited using using *chemical vapor deposition* (*CVD*) to deposit dopants using a gaseous source in a furnace
 - Poly wires (e.g., transistor gates) are deposited before diffusion to create selfaligned transistors — this avoids small gaps that might otherwise occur if the order is reversed
 - Metal layers are deposited in a similar manner, called *sputtering*

Fabricating a CMOS Transistor (cont.)

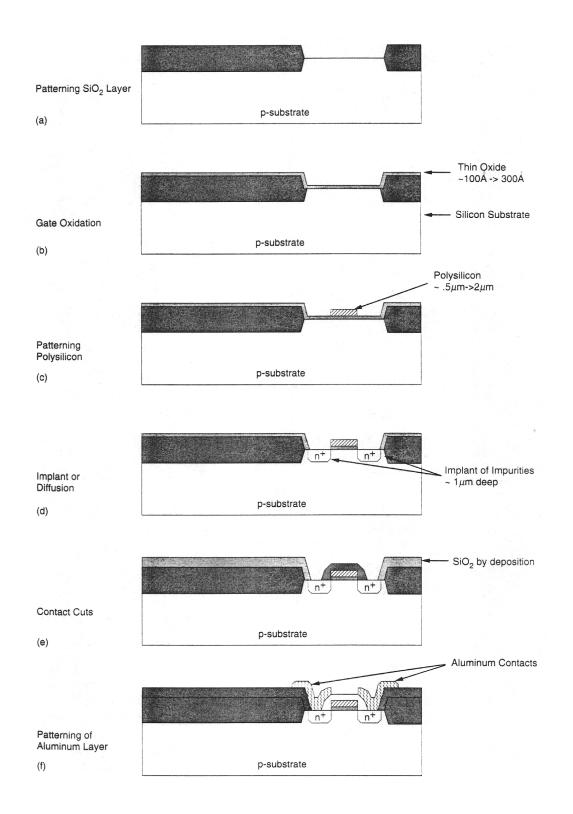


Figure from *Principles of CMOS VLSI Design*, Weste, Addison-Wesley, 1993 Fall 2003, Lecture 29

Wires and Vias

- "Wires" can be fabricated using diffusion, polysilicon, or metal
 - Must be insulated from each other using silicon dioxide; can be built up as layers
 - Diffusion used only for within a cell
 - Poly used between adjacent cells
 - Metal used for longer connections
 Chip may have 5-6 layers of metal
 - Cuts in the silicon dioxide between layers are called vias
- Metal layer 1 is used for VDD and VSS; other layers are used for interconnection
 - Under high currents, electron collisions with metal grains can cause the metal to move (*metal migration*), so in large designs, sizing the power supply lines is critical to keep chip from failing

CMOS Inverter in a n-well Process

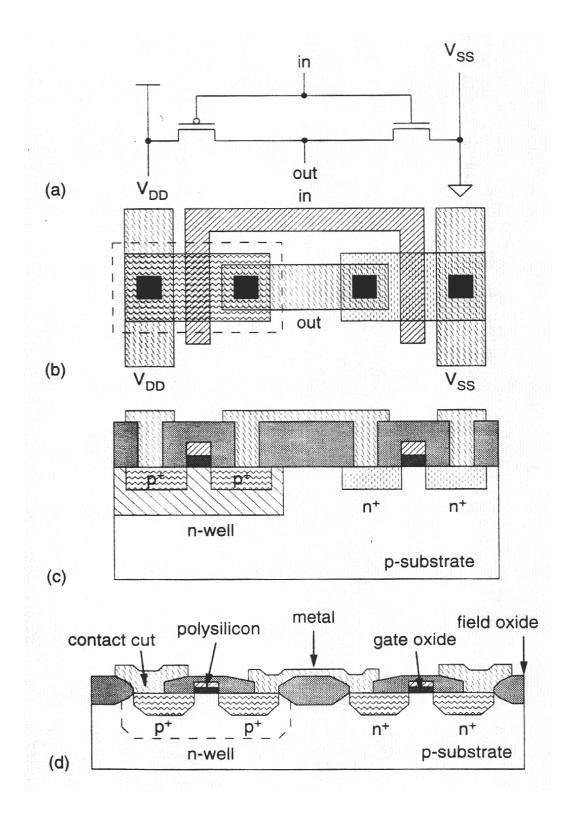


Figure from *Principles of CMOS VLSI Design*, Weste, Addison-Wesley, 1993

CMOS Inverter in a n-well Process, With Tub Ties

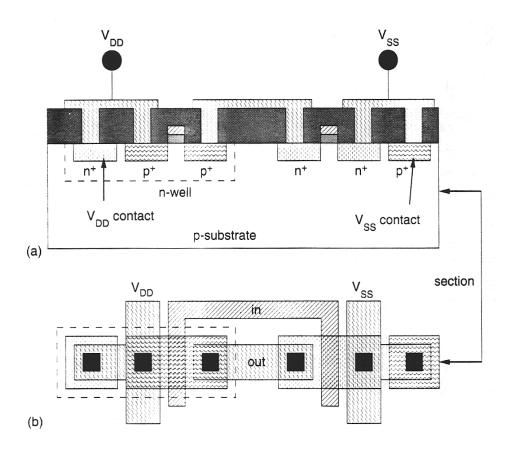


Figure from *Principles of CMOS VLSI Design*, Weste, Addison-Wesley, 1993

An n-channel (p-channel) transistor's substrate must be tied to VSS (VDD)

- The special vias that provide these connections are called *tub ties*
 - Need one every 1-2 transistors (SCMOS)
- Tie area in substrate is heavily doped to provide a low-resistance connection

Design Rules & Fabrication Errors

- Common fabrication errors:
 - Wire too wide may *short* (contact) an adjacent wire
 - Wire too narrow may break under load, and become open
- Solution impose *design rules* to specify what's legal and illegal
 - Wires specify minimum width and minimum spacing between wires
 - Poly must extend beyond channel to ensure that there is no short between source and drain
 - Diffusion must extend enough to have room for a contact to that region
 - Via must be smaller than what it's contacting, what it's contacting must extend back under SiO₂

Scaleable Design Rules (1997)

- Fabrication processes are constantly being improved
 - (Gordon) Moore's Law (version 2) says that the number of transistors on a chip is doubling every 18 months
- We take advantage of these improvements by designing according to scaleable design rules
 - Specified in terms of λ, the minimum feature size possible in that process
 - In MOSIS SCMOS rules, mimium channel width (poly) is 2λ , and minimum wire width is 2λ
 - MOSIS = MOS Implementation Service, located at the Information Sciences Institute at the University of Southern California (USC), does small-volume fabrication for universities (partially NSFfunded) and commercially (www.isi.edu)

SCMOS Design Rules (1997) (cont.)

MOSIS (rev. 7), dimensions in λ

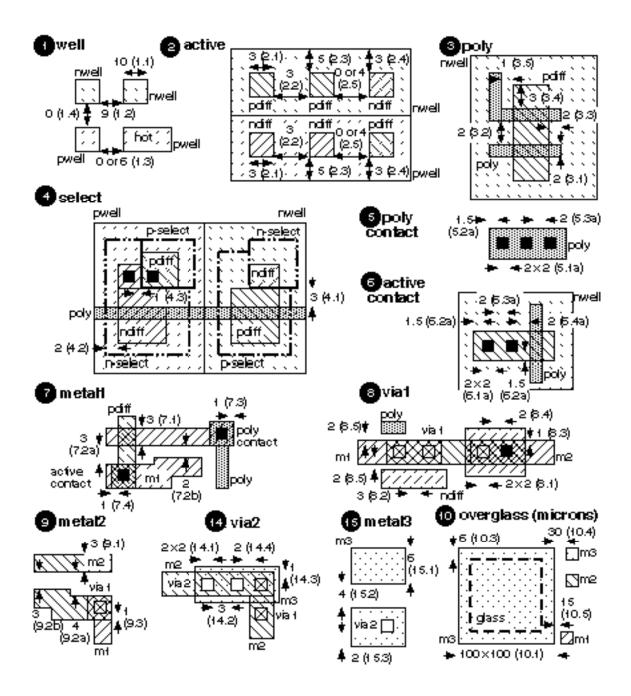


Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

SCMOS Design Rules (1997) (cont.)

MOSIS (rev. 7), dimensions in λ

TABLE 2.7 MOSIS	6 scala	ble CMOS rules version 7the process front end.		
Layer	Rule	Explanation	Value /	λ
well (CWN, CWP)	1.1	minimum width	10	
	1.2	minimum space (different potential, a hot well)	9	
	1.3	minimum space (same potential)	0 or 6	
	1.4	minimum space (different well type)	0	
active (CAA)	2.1/2.2	2 minimum width/space	3	
	2.3	source/drain active to well edge space	5	
	2.4	substrate/well contact active to well edge space	3	
	2.5	minimum space between active (different implant type)) 0 or 4	
poly (CPG)	3.1/3.2	2 minimum width/space	2	
	3.3	minimum gate extension of active	2	
	3.4	minimum active extension of poly	3	
	3.5	minimum field poly to active space	1	
select (CSN, CSP)	4.1	minimum select spacing to channel of transistor 1	3	
	4.2	minimum select overlap of active	2	
		minimum select overlap of contact	1	
	4.4	minimum select width and spacing <u>2</u>	2	
poly contact (CCP)	5.1.a	exact contact size	2 ∞ 2	2
	5.2.a	minimum poly overlap	1.5	
	5.3.a	minimum contact spacing	2	
active contact (CCA)	6.1.a	exact contact size	2 ∞ 2	•
	6.2.a	minimum active overlap	1.5	
	6.3.a	minimum contact spacing	2	
	6.4.a	minimum space to gate of transistor	2	

Economics of ASICs

For a given design, which type of ASIC is the most cost-effective?

• (full-custom) ASIC?

• MGA (mask-programmable gate array)?

 CBIC (cell-based integrated circuit = standard-cell-based ASIC)?

Answer: consider the ASIC as a product, and examine the fixed costs and variable costs

 total product cost = fixed product cost + variable product cost

- Fixed product cost is independent of sales volume
 - Fixed product costs amortized per product sold decrease as sales volume increases
- Variable product cost includes assembly costs and manufacturing costs

Example of ASIC Economics (Warning – 1997 Numbers!)

Sample costs:

- CBIC: fixed cost \$146,000; part cost \$8
- MGA: fixed cost \$86,000; part cost \$10
- FPGA: fixed cost \$21,800; part cost \$39

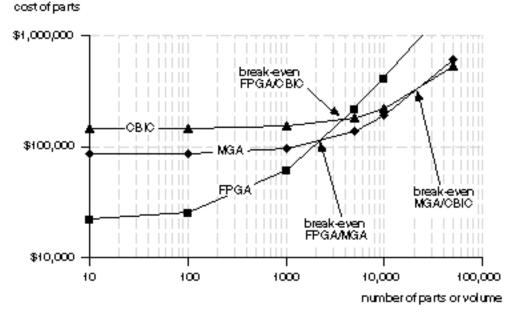


Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

Break-even points:

- FPGA to MGA is around 2,000 parts
- FPGA to CBIC is around 4,000 parts
- MGA to CBIC is around 20,000 parts

ASIC Fixed Costs (1997 Numbers!)

- Design: estimate of designer productivity
- Production test: make sure the IC works
- Non-recurring engineering (NRE): work done by ASIC vendor — developing mask, production tests, prototypes, etc.

	FPGA	۱.	MG	A	СВ	
Training:	\$800		\$2,000		\$2,000	
Days		2		5		5
Cost/day		\$400		\$400		\$400
Hardware	\$10,000		\$10,000		\$10,000	
Software	\$1,000		\$20,000		\$40,000	
Design:	\$8,000		\$20,000		\$20,000	
Size (gates)		10,000		10,000		10,000
Gates/day		500		200		200
Days		20		50		50
Cost/day		\$400		\$400		\$400
Design for test:			\$2,000		\$2,000	
Days				5		5
Cost/day				\$400		\$400
NRE:			\$30,000		\$70,000	
Masks				\$10,000		\$50,000
Simulation				\$10,000		\$10,000
Test program				\$10,000		\$10,000
Second source:	\$2,000		\$2,000		\$2,000	
Days		5		5		5
Cost/day		\$400		\$400		\$400
Total fixed costs	\$21,800		\$86,000		\$146,000	

ASIC Variable Costs (1997 Numbers!)

- Wafer size: 6" & 8" common, 12" soon
- 10k gates = small design, 100k = large
- Gate utilization: space used for gates, not used for interconnect
- Defect density is measure of fabrication quality (defect on a die is usually fatal)
- Yield is percentage of usable dies

	FPGA	MGA	OBIC Units
Wafersize	6	6	6 inches
Wafer cost	1,400	1,300	1,500 \$
Design	10,000	10,000	10,000 gates
Density	10,000	20,000	25,000 gates/sq.cm
Utilization	60	85	100 %
Die size	1.67	0.59	0.40 sq.cm
Die/wafer	88	248	365
Defect density	1.10	090	1.00 defe cts <i>i</i> sq.cm
Yield	65	72	80 %
Diecost	25	7	5\$
Profitmargin	60	45	50 %
Price/gate	0.39	0.10	0.08 cents
Part cost	\$39	\$10	\$8