Due to Prof. Walker by 5pm on Wednesday 29 September 2004

this project counts as 10% of your course grade

1. Do Lab Exercise 4 on page 25 of Rapid Prototyping of Digital Systems, Second Edition. Use the FLEX 10K chip, the FLEX pushbuttons, and the decimal point between the two digits of the FLEX 7-segment display.
Turn in:
a) a readable (not microscopic) printout of the schematic (20 points)
b) a printout of the test inputs and simulation output that shows that that the circuit works as expected, annotated to explain the operation of the circuit (10 points)
c) a printout of the timing analysis showing the input to output delay matrix (5 points)
d) a signature on the statement below by Prof. Walker, by the TA (Hong Wang), by one of Prof. Walker's research students listed on the door of the lab, or by $\boldsymbol{t w o}$ other students in the class (15 points):

I certify that \qquad has successfully downloaded this design to a UP1 board and the design works correctly.
Name
Name \quad Date
Nate
2. The XOR gate is sometimes called the "odd function" since it can be used to determine whether or not there are an odd number of 1's on its input. Use the FLEX chip, XOR gates, and whatever inputs and outputs you want to test this "odd function" for up to 4 inputs.
Turn in:
a) printouts (a) through (c) similar to those in problem 1 above (35 points)
b) a signature on the statement below by Prof. Walker, by the TA (Hong Wang), by one of Prof. Walker's research students listed on the door of the lab, or by $\underline{\boldsymbol{t w o}}$ other students in the class (15 points):

I certify that \qquad has successfully downloaded this design to a UP1 board and the design works correctly.
\qquad Name \qquad Date
\qquad
Name \qquad Date

