Gate-Array-Based ASICs

- Transistors are predefined in a fixed pattern on the chip
 - Interconnect is defined by designer and fabricated using a custom mask
 - Designer chooses cells from a gate-array library of predefined, pretested cells
- Chip is partially fabricated (cells, power, etc. added) and then stockpiled
 - When design is received for fabrication, the remaining metal layers are added
 - Cheaper everyone shares cost of producing high volume of initial chip
 - Quick turn-around days, couple weeks
- Variations:
 - Channeled gate arrays
 - Channelless gate arrays

Field Programmable Logic Devices (FPLDs)

- Known by a variety of names:
 - Field-Programmable Gate Array (FPGA)
 - Field-Programmable Logic Device (FPLD)
 - Complex Programmable Logic Device (CPLD)
- Similar to PLDs, but more complex
 - No customized mask layers
 - Some method for programming the base logic cells and the interconnect
 - Core is a regular array of programmable logic cells, each of which contains combinational and sequential logic
 - Programmable interconnect surrounds the logic cells
 - Design turn-around is on the order of hours

Programmable Logic Devices (PLDs)

- Standard ICs, available in standard configurations, sold in high volume
 - But can be configured / programmed to create a specialized device
 - No customized cells or masks, just a single large block of programmable interconnect
 - Fast turn-around time
- Examples

2

Spring 2000, Lecture 03

- Mask-programmable ROM programmed when ordered
- Programmable ROM programmed electrically, erased electrically or using ultraviolet light, all by customer
- PAL, PLA 2-level sum-of-products and/or array, programmed electrically by customer (blowing fuses in array)

Spring 2000, Lecture 03

Economics of ASICs

- For a given design, which type of ASIC is the most cost-effective?
 - (full-custom) ASIC?
 - MGA (mask-programmable gate array)?
 - CBIC (cell-based integrated circuit = standard-cell-based ASIC)?
- Answer: consider the ASIC as a product, and examine the fixed costs and variable costs
 - total product cost = fixed product cost + variable product cost
 - Fixed product cost is independent of sales volume
 - Fixed product costs amortized per product sold decrease as sales volume increases
 - Variable product cost includes assembly costs and manufacturing costs

4

Example of ASIC Economics

- Sample costs:
 - CBIC: fixed cost \$146,000; part cost \$8
 - MGA: fixed cost \$86,000; part cost \$10
 - FPGA: fixed cost \$21,800; part cost \$39

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

Break-even points:

5

- FPGA to MGA is around 2,000 parts
- FPGA to CBIC is around 4,000 parts
- MGA to CBIC is around 20,000 parts

ASIC Variable Costs

- Wafer size: 6" & 8" common, 12" soon
- 10k gates = small design, 100k = large
- Gate utilization: space used for gates, not used for interconnect
- Defect density is measure of fabrication quality (defect on a die is usually fatal)
- Yield is percentage of usable dies

FPGA	MGA	OBIC	Units
6	6	6	inches
1,400	1,300	1,500	\$
10,000	10,000	10,000	gates
10,000	20,000	25,000	gates/sq.cm
60	85	100	%
1.67	0.59	0.40	sq.cm
88	248	365	
1.10	0.90	1.00	defects/sq.cm
65	72	80	%
25	7	5	\$
60	45	50	%
0.39	0.10	0.08	cents
\$39	\$10	\$8	
	FPGA 6 1,400 10,000 60 1,57 88 1,10 65 25 60 0,39 \$39	FPGA MGA 6 6 1,400 1,300 10,000 10,000 10,000 20,000 60 85 1,67 0.59 88 248 1,10 0.90 65 7 25 7 60 45 0.39 0.10	FPGA MGA OBIC 6 6 6 1/400 1/300 1/500 10/000 10/000 10/000 10/000 20/000 25/000 60 85 100 157 0.59 0.40 88 248 365 1.10 0.30 1.00 65 72 80 25 7 5 60 45 50 0.39 0.10 0.08 \$29 \$10 \$8

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

Spring 2000, Lecture 03

ASIC Fixed Costs

- Design: estimate of designer productivity
- Production test: make sure the IC works
- Non-recurring engineering (NRE): work done by ASIC vendor — developing mask, production tests, prototypes, etc.

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997 Spring 2000, Ledure 03