Altera's MAX+PLUS II Development System

- Supports Altera MAX and FLEX devices
- Design entry includes: schematic capture, waveform entry, and the AHDL, VHDL, and Verilog hardware description languages (HDLs) [Verilog in 9.xx only]
- Documentation:
 - Tutorials in Hamblen Chapters 1 and 4
 - Brief overview in Salcic Section 3.4
 - Altera's "data sheet" overview (~20 pages) (link on class web page)
 - Altera's "Getting Started" manual (~ 350 pages) (link on class web page)
 - Detailed overview in Chapter 2, "A Perspective" (~80 pages)
 - Printout(s) in VLSI Design Lab
 - Chapter 3, "Tutorial"

Using the MAX+PLUS II Software

- 7.21 Student Edition in Salcic book
 - Runs on PCs
 - Windows 3.1, 95, NT 3.51 & 4.0
 - Requires 32MB memory, 35MB disk space
 - Differences from commercial version:
 - Can't use non-Altera design entry tools
 - Only supports devices on UP1 Educ. Board
 - Can't generate output files other than for programming chips on UP1 Educ. Board
 - You can install at home, but must register with Altera (see Altera's web page) to get an authorization code to use it
 - Start installing, get Software Guard ID
 - Use form on web page to send it to Altera
 - Within 12 hours, should get Authorization Code from Altera by email
 - Input into MAX+PLUS II to enable it

Spring 2000, Lecture 10

2

Spring 2000, Lecture 10

Using the MAX+PLUS II Software

- 9.23 Student Edition in Hamblen book
 - Runs on PCs
 - Windows 95, 98, NT 3.51 & 4.0
 - Uses about 90MB disk space for software plus Hamblen's examples
 - You can install at home, but must register with Altera (see Altera's web page) to get a license file to use it
 - Install the software
 - Use form on web page to send your disk drive serial number to Altera
 - Within 12 hours, should get a license file from Altera by email
 - Install along with MAX+PLUS II to enable it
- Procedure for projects:
 - Work on projects at home, in MSB 139, or in the VLSI Design Lab (MSB 353)
 - Then come to the VLSI lab to download and test on a UP1 Education Board

Altera MAX+PLUS II Overview



Figure from Altera technical literature

Spring 2000, Lecture 10 4 Spring 2000, Lecture 10

The "Chiptrip" Tutorial Example

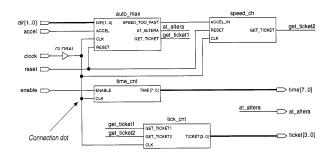


Figure from Altera technical literature

- Simulates an auto driving around town
 - auto_max AHDL state machine that keeps track of location of auto and acceleration at that point in time, gives ticket if you accelerate on small roads
 - speed_ch waveform state machine that gives ticket if you accelerate for a second time
 - tick_cnt counter that counts tickets
 - time_cnt AHDL counter that keeps track of time taken to reach Altera

Spring 2000, Lecture 10

Graphic Editor

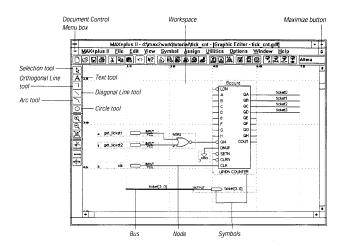


Figure from Altera technical literature

- Enter cells from various predefined component libraries, or user-defined cells
- Connect cells using nets, buses, or name
- "Smart" selection tool automatically becomes proper tool for task at hand

Spring 2000, Lecture 10

Waveform Editor

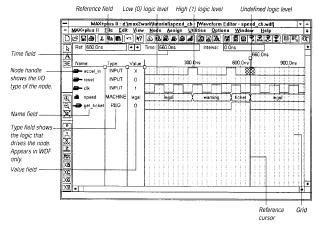
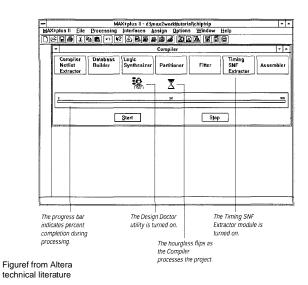



Figure from Altera technical literature

- Can contain logical and state machine inputs; combinational, registered, and state machine outputs; and "buried" nodes to help define desired outputs
 - Can specify state names for state machines
- Can compare desired and actual outputs

Compiler

- Checks for design entry errors, builds a single large flat database
- Logic synthesis to minimize resource usage (see Assign/Global Project Logic Synthesis), partitioner and fitter to match to available devices

Spring 2000, Lecture 10

Simulation Results

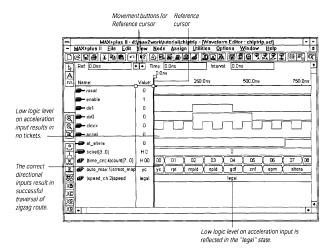


Figure from Altera technical literature

- Use waveform editor to specify simulation inputs
- Simulate, then view results in waveform editor (as shown above)
 - Simulate individual or grouped nodes (particularly good for state machines)

Spring 2000, Lecture 10

Design Using Altera's MAX+PLUS II

- Follow along in Hamblen Sections 1.2, 1.3, 1.4, 1.9, 1.10
 - Compiling the design
 - Errors, warnings, report file
 - (Timing) simulation
 - Entering simulation test vectors
 - Simulation and results
 - Downloading to the Flex 10k chip on the UP1 Education Board
 - Hookup parallel cable and power
 - JTAG setup
 - Download and test the design!
 - Timing analysis
 - Floorplan editor
 - Note automatic place and route
- You should try this sometime soon, possibly without actually downloading

Floorplan Editor

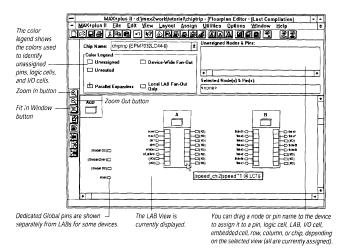


Figure from Altera technical literature

- Device view shows pins, LAB view shows LABs, equations, I/O, and routing
- Can use to edit assignments
- After compilation, get information on most congested area of chip, number of expanders used within each LAB

Spring 2000, Lecture 10