
1 Spring 2000, Lecture 11

Altera MAX+PLUS II Overview

Figure from Altera technical literature

2 Spring 2000, Lecture 11

Using the MAX+PLUS II Software
on vlsi.mcs.kent.edu

n Everyone in this class has access to “vlsi”

● HP C180, 384MB of memory

n To run MAX+PLUS II:

● Either type this line before running
MAX+PLUS II, or add it to your “.cshrc” file
so that it executes every time you log in:

setenv LM_LICENSE_FILE /local/opt
maxplus2/adm/license.altera

● Run MAX+PLUS II by typing:

/local/opt/maxplus2/bin/maxplus2

● The first time it runs, it will copy the
initialization file “maxplus2.ini” to your
home directory

● If you telnet from another workstation’s
console, you must tell it to give vlsi access
to its display (“xhost +vlsi”), and set your
DISPLAY variable on vlsi  to point to that
console (“setenv DISPLAY machine:0.0”)

3 Spring 2000, Lecture 11

Using Predesigned Components in
MAX+PLUS II

n Various components available

● “Old-style macrofunctions” = 74-style
n Familiar, but not recommended since they

aren’t as optimized as components below

● Primitives
n Gates, flip-flops, buffers

● Standardized LPM (Library of
Parameterized Modules) functions
n Gates, arithmetic, & storage components

● Complex predesigned “megafunctions”
n Controllers, DSPs, communications…
n Others available from Altera’s partners

– Use non-savable “preview” to evaluate
» Buy post-synthesis netlist for $
» Buy HDL source for $$$

n For documentation on these components,
see MAX+PLUS II online help, or info on
Altera’s web site (link on class web page)
or the Altera Digital Library CDROM

4 Spring 2000, Lecture 11

Getting Help in MAX+PLUS II

n Help menu provides basic documentation

● AHDL, VHDL, Verilog

● Megafunctions / LPM (LPM grouped by
function, then megafunctions)

● Old-Style Macrofunctions (grouped by
function, also available by number)

● Primitives (grouped by function)

● Devices and adapters (FLEX 10K, etc.)

● Messages, glossary, info about this
release, how to use help

n Help syntax

● Most links are shown in green text
n Underlined links jump to new help topics

n Dotted-underlined links pop up a glossary
entry

● Blue links pop up an example, list of
shortcuts, or illustration



5 Spring 2000, Lecture 11

Getting Help in MAX+PLUS II
(cont.)

n Help menu also provides application-
specific documentation (e.g., Graphics
Editor Help) in a sub-menu

● Introduction (how to get started)

● Basic Tools (inputs/outputs, tools,
toolbars, components, examples)

● Commands (details on every command in
the application, examples, illustrations)

● Procedures (step-by-step instructions on
how to perform various tasks in the
application)

● Golden Rules (essential tips and rules for
using the application)

● Shortcuts (keyboard, mouse button, and
toolbar shortcuts for commands in the
application)

● Messages (explanation of error
messages for the application)

6 Spring 2000, Lecture 11

Design Entry (cont.)

n Logic synthesis

● Allows design entry at a “higher” level of
abstraction — important for complex
designs

● Input:
n State machines

n Boolean equations

using a Hardware Description Language
(HDL) such as
n VHDL
n Verilog

n AHDL, etc. (vendor-specific)

● Input:
n Timing diagrams (waveforms)

using a waveform editor

● Then the logic synthesis tools will
generate the schematic

7 Spring 2000, Lecture 11

The “Chiptrip” Tutorial Example,
Revisited

Figure from Altera technical literature

n Simulates an auto driving around town

● auto_max — AHDL state machine that
keeps track of location of auto and
acceleration at that point in time, gives
ticket if you accelerate on small roads

● speed_ch — waveform state machine
that gives ticket if you accelerate for a
second time

● tick_cnt — counter that counts tickets

● time_cnt — AHDL counter that keeps
track of time taken to reach Altera

8 Spring 2000, Lecture 11

Text Editor

Figure from Altera technical literature

n Provides AHDL, VHDL, Verilog templates

n Syntax coloring, drag-and-drop editing,
ability to find matching delimiters

n Compiler / simulator automatically
locates and highlights errors

n Context-sensitive help (arrow-? button)



9 Spring 2000, Lecture 11

Sample VHDL Code
for Logic Synthesis

n Part of the code describing a variable-
width shift register:

architecture Behave of ShiftN is
         begin Shift: process (CLR, CLK)
                 if CLR = '1' then
                         St := (others => '0');

                    Q <= St after TCQ;
                 elsif CLK'EVENT and CLK='1' then
                         if LD = '1' then
                                 St := (others => '0');
                                 St(InB) := D;
                                 Q <= St after TLQ;
                         elsif SH = '1' then
                                 case DIR is
                                 when '0' => St :=
                                         '0' & St(St'LEFT downto 1);
                                 when '1' => St :=
                                        St(St'LEFT-1 downto 0) & '0';
                                 end case;
                                 Q <= St after TSQ;
                         end if;
                 end if;
         end process;

10 Spring 2000, Lecture 11

Sample VHDL Code
for Logic Synthesis

n Part of the code describing a finite state
machine to control a multiplier datapath:

process (CLK, Reset) begin
         if Reset = '1' then State <= E;
         elsif CLK'EVENT and CLK = '1' then
                 case State is
                 when I => State <= C;
                 when C =>
                         if LSB = '1' then State <= A;
                         elsif Stop = '0' then State <= S;
                         else State <= E;
                         end if;
                 when A => State <= S;
                 when S => State <= C;
                 when E =>
                         if Start = '1' then State <= I; end if;
                 end case;
         end if;
 end process;
 end;

11 Spring 2000, Lecture 11

Design Using Altera’s MAX+PLUS II

n Follow along in Hamblen Sections 1.5
and 1.6, end of Chapter 1

● VHDL design entry

● Entity versus architecture

n Verilog

n Symbols and hierarchy

n Functional simulation


