Altera MAX+PLUS Il Overview

Functional
Simulation
Programming

Mentor Graphics
Device

Verification & Programming
Cadence
Synopsys
Viewlogic
Others
Timing
Simulation
Multi-Device
Simulation
Timing
Analysis
OpenCore
Evaluation

=
=2
1=
i
'
™

>Q
edif
Standard
; DA
/

Synthesis &
Multi-Device
Partitioning
Compilation
OpenCore
Evaluation

Design Compilation
£
gdwﬂ
AX+PLUS ! Compiler
»
R
N
:’,E:’f: , Logic

Design-Rule
Checking
Automatic
Location

Timing

Fitting

>
/

Efror
Driven

-

e

T
=]
I
o
2
Pl T o 2 —
>> g £
8 o g9 8, E
= [=d P c =
g & g R 28§ F g2
£ - < o B € =
> 808858, b §% 352 fu 54
g5 a8 2¢c i Sc S 8
E|585¢5E8 5& o3 §Lis sH 55 g2
S 885359 T3 ¥ SFY 5% 8% 3%
g |C2054Wd8 G0 8X =%% 28 8 cd
4 e K]
«Q -3 & e 8
T Exa & | “H L 2]
o So0eE t"'gﬁ 5% &
“uauw R L3S £48 b

Figure from Altera technical literature

Spring 2000, Lecture 11

Using the MAX+PLUS Il Software
on visi.mcs.kent.edu

m Everyone in this class has access to “visi”
e HP C180, 384MB of memory

m To run MAX+PLUS II:

¢ Either type this line before running
MAX+PLUS I, or add it to your “.cshrc” file
so that it executes every time you log in:

setenv LM_LICENSE_FILE /local/opt
maxplus2/adm/license.altera

e Run MAX+PLUS II by typing:
/local/opt/maxplus2/bin/maxplus2

e The first time it runs, it will copy the
initialization file “maxplus2.ini” to your
home directory

¢ If you telnet from another workstation’s
console, you must tell it to give visi access
to its display (“xhost +vlisi”), and set your
DISPLAY variable on visi to point to that
console (“setenv DISPLAY machine:0.0”)

2 Spring 2000, Lecture 11

Using Predesigned Components in
MAX+PLUS I

m Various components available

¢ “Old-style macrofunctions” = 74-style

m Familiar, but not recommended since they
aren’t as optimized as components below

e Primitives
m Gates, flip-flops, buffers

e Standardized LPM (Library of
Parameterized Modules) functions

m Gates, arithmetic, & storage components

e Complex predesigned “megafunctions”
m Controllers, DSPs, communications...
m Others available from Altera’s partners
— Use non-savable “preview” to evaluate
» Buy post-synthesis netlist for $
» Buy HDL source for $$$

m For documentation on these components,
see MAX+PLUS Il online help, or info on
Altera’s web site (link on class web page)
or the Altera Digital Library CDROM

3 Spring 2000, Lecture 11

Getting Help in MAX+PLUS Il

m Help menu provides basic documentation
e AHDL, VHDL, Verilog

e Megafunctions / LPM (LPM grouped by
function, then megafunctions)

e Old-Style Macrofunctions (grouped by
function, also available by number)

¢ Primitives (grouped by function)
e Devices and adapters (FLEX 10K, etc.)

e Messages, glossary, info about this
release, how to use help

m Help syntax

e Most links are shown in green text
m Underlined links jump to new help topics

m Dotted-underlined links pop up a glossary
entry

¢ Blue links pop up an example, list of
shortcuts, or illustration

4 Spring 2000, Lecture 11

Getting Help in MAX+PLUS I
(cont.)

m Help menu also provides application-
specific documentation (e.g., Graphics
Editor Help) in a sub-menu

¢ Introduction (how to get started)

e Basic Tools (inputs/outputs, tools,
toolbars, components, examples)

¢ Commands (details on every command in
the application, examples, illustrations)

e Procedures (step-by-step instructions on
how to perform various tasks in the
application)

e Golden Rules (essential tips and rules for
using the application)

¢ Shortcuts (keyboard, mouse button, and
toolbar shortcuts for commands in the
application)

e Messages (explanation of error
messages for the application)

Spring 2000, Lecture 11

Design Entry (cont.)

m Logic synthesis

¢ Allows design entry at a “higher” level of
abstraction — important for complex
designs

e Input:
m State machines
m Boolean equations

using a Hardware Description Language
(HDL) such as

m VHDL

m Verilog

m AHDL, etc. (vendor-specific)

e Input:
m Timing diagrams (waveforms)

using a waveform editor

e Then the logic synthesis tools will
generate the schematic

Spring 2000, Lecture 11

The “Chiptrip” Tutorial Example,
Revisited

auto_max speed_ch

dir[1,.0] [O=smmmasi DIR[1.0] SPEED_TOO_FAST ACCEL_IN
at_altera -
accel [>—————————— ACCEL AT_ALTERA GET_TICKET

—CLK GET_TICKET geLHCKSH CLK
reset (

get_ticket2

610Ral
clock C>—>—4 Jr

reset [

time_cnt

enable >—— ENABLE TIME(7.0) time[7..0]
oK
at_altera
————> al_altera
tick_cnt
get_ticket1
GET_TICKET!
_getlcke? |t noker miokeTp.ol ticket[3..0}

Connection dot

oK

Figure from Altera technical literature

m Simulates an auto driving around town

e auto_max — AHDL state machine that
keeps track of location of auto and
acceleration at that point in time, gives
ticket if you accelerate on small roads

e speed_ch — waveform state machine
that gives ticket if you accelerate for a
second time

e tick_cnt — counter that counts tickets
e time_cnt — AHDL counter that keeps
track of time taken to reach Altera

Spring 2000, Lecture 11

Text Editor

[= MAX+plus 11 - d: ialime_cat - [Text Editor - time _cnt.tdf] [=1~
~] MAXtpius II_File _Edit_Icmplates _Assign _Ulilitic ns _Window Help :

Dl (£ R[8)(-]) @RE52]E) Gk EEEE

Y

enable, clk : INPUT;
time(7..0] i OUTPUT;

)
VARIABLE
count[7..0] + DFF;
BEGIN
Boolean [counciy.c1x = cix:

equations [eimers = counells

IF enable THEN
count{].d = count[].q + 1:
ELSE If Then
count(].d = count{].q: Statement
£ND IF;

ND;

Line 6 [Col 1 TINS[+[I+

Figure from Altera technical literature

m Provides AHDL, VHDL, Verilog templates

m Syntax coloring, drag-and-drop editing,
ability to find matching delimiters

m Compiler / simulator automatically
locates and highlights errors

m Context-sensitive help (arrow-? button)

Spring 2000, Lecture 11

Sample VHDL Code
for Logic Synthesis

m Part of the code describing a variable-
width shift register:

architecture Behave of ShiftN is
begin Shift: process (CLR, CLK)
if CLR ='1" then
St := (others =>"0");
Q <= St after TCQ;
elsif CLK'EVENT and CLK="1' then
if LD ='1" then
St := (others =>"'0");
St(InB) := D;
Q <= St after TLQ;
elsif SH ='1' then
case DIR is
when '0' => St ;=
'0' & St(St'LEFT downto 1);
when '1'=> St ;=
St(St'LEFT-1 downto 0) & '0";
end case;
Q <= St after TSQ;
end if;
end if;
end process;

9 Spring 2000, Lecture 11

Sample VHDL Code
for Logic Synthesis

m Part of the code describing a finite state
machine to control a multiplier datapath:

process (CLK, Reset) begin
if Reset ='1' then State <= E;
elsif CLK'EVENT and CLK ="'1'then
case State is
when | => State <= C;
when C =>
if LSB ='1' then State <= A;
elsif Stop = '0' then State <= S;
else State <= E;
end if;
when A => State <= S;
when S => State <= C;
when E =>
if Start = '1' then State <= [; end if;
end case;
end if;
end process;
end;

10 Spring 2000, Lecture 11

Design Using Altera’s MAX+PLUS Il

m Follow along in Hamblen Sections 1.5
and 1.6, end of Chapter 1

e VHDL design entry

¢ Entity versus architecture
m Verilog
m Symbols and hierarchy

m Functional simulation

11 Spring 2000, Lecture 11

