Cross-Section of an N-Channel MOS Transistor (Review)

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

- Base is silicon substrate (bulk, well, tub) that's been doped with p-type impurities (full of positively-charged holes)
 - Two *diffusion* areas heavily doped with ntype impurities (full of negatively-charged *electrons*) form the *source* and *drain*
 - Transistor action takes place at the *channel*, connecting the source and drain

Spring 2000, Lecture 14

2

A very thin layer of silicon dioxide (SiO₂), called the *gate oxide*, insulates the *gate*, made of polysilicon, from the channel

IC Fabrication (cont.)

- IC fabrication process uses a series of masking steps to create the layers that form the transistors etc. on the chip
- 5. A thin layer (1 μm) of liquid photoresist (*resist*) is spun onto each wafer, and it is baked at 100°C to harden the resist
- 6. The wafer is partially exposed to ultraviolet light through a *mask*, which polymerizes the exposed areas; the polymerized part is then removed using an organic solvent
- 7. The exposed oxide is *etched* away, making the oxide match the mask
- 8. The exposed silicon substrate is doped with appropriate ions by an *ion implanter*
- 9. & 10. Resist and oxide are removed

IC Fabrication

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

- 1. Start with silicon (Si), refined from quartzite, dope it with p- or n-type impurities, and melt it at 1500°C
- 2.&3. Draw out a single crystal (6" or 8"), saw it into thin (600µm) *wafers*, polish one side, and grind down an edge or two
- Batch of wafers (a *wafer lot*) is placed on a *boat* and put in a furnace to grow a layer (1000 Å) of silicon dioxide (SiO₂) (called the *oxide*)

Spring 2000, Lecture 14

Fabricating a CMOS Transistor

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

- Continuing the fabrication process:
 - Polycrystalline silicon (*poly*) is deposited using using *chemical vapor deposition* (*CVD*) to deposit dopants using a gaseous source in a furnace
 - Poly wires (e.g., transistor gates) are deposited before diffusion to create selfaligned transistors — this avoids small gaps that might otherwise occur if the order is reversed
 - Metal layers are deposited in a similar manner, called *sputtering*

Spring 2000, Lecture 14

Spring 2000, Lecture 14

5

Design Rules & Fabrication Errors

- Common fabrication errors:
 - Wire too wide may short (contact) an adjacent wire
 - Wire too narrow may break under load, and become open
- Solution impose design rules to specify what's legal and illegal
 - Wires specify minimum width and minimum spacing between wires
 - Poly must extend beyond channel to ensure that there is no short between source and drain
 - Diffusion must extend enough to have room for a contact to that region
 - Via must be smaller than what it's contacting, what it's contacting must extend back under SiO₂

Spring 2000, Lecture 14

10

Scaleable Design Rules

- Fabrication processes are constantly being improved
 - (Gordon) Moore's Law (version 2) says that the number of transistors on a chip is doubling every 18 months
- We take advantage of these improvements by designing according to scaleable design rules
 - Specified in terms of λ, the minimum feature size possible in that process
 - In MOSIS SCMOS rules, mimium channel width (poly) is 2λ , and minimum wire width is 2λ
 - MOSIS = MOS Implementation Service, located at the Information Sciences Institute at the University of Southern California (USC), does small-volume fabrication for universities (partially NSFfunded) and commercially (www.isi.edu)

Spring 2000, Lecture 14

SCMOS Design Rules (cont.)

• MOSIS (rev. 7), dimensions in λ

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

SCMOS Design Rules (cont.)

• MOSIS (rev. 7), dimensions in λ

TABLE 2.7 MOSIS scalable CMOS rules version 7the process front end.					
	Layer	Rule	Explanation	Value /	λ
	well (CWN, CWP)	1.1	minimum width	10	
		1.2	minimum space (different potential, a hot well)	9	
		1.3	minimum space (same potential)	0 or 6	
		1.4	minimum space (different well type)	0	
	active (CAA)	2.1/2.2	2 minimum width/space	3	
		2.3	source/drain active to well edge space	5	
		2.4	substrate/well contact active to well edge space	3	
		2.5	minimum space between active (different implant type)	0 or 4	
	poly (CPG)	3.1/3.2	2 minimum width/space	2	
		3.3	minimum gate extension of active	2	
		3.4	minimum active extension of poly	3	
		3.5	minimum field poly to active space	1	
	select (CSN, CSP)	4.1	minimum select spacing to channel of transistor 1	3	
		4.2	minimum select overlap of active	2	
		4.3	minimum select overlap of contact	1	
		4.4	minimum select width and spacing 2	2	
	poly contact (CCP)	5.1.a	exact contact size	2∞2	2
		5.2.a	minimum poly overlap	1.5	
		5.3.a	minimum contact spacing	2	
	active contact (CCA)	6.1.a	exact contact size	2∞2	2
		6.2.a	minimum active overlap	1.5	
		6.3.a	minimum contact spacing	2	
		6.4.a	minimum space to gate of transistor	2	

Table from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997