
Types of FPLDs

light, which provides enough energy for

onto the bulk, returning the transistor to

Can be reprogrammed many times

normal operation

the electrons stuck on gate1 to jump back

Type of Base Cell

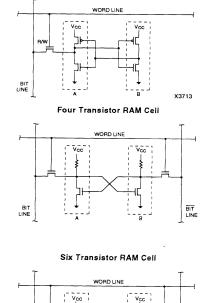
Programming Using Antifuses

- An antifuse is normally open ("off"); when enough current (5–15mA) passes through it it closes ("on") • Current melts a thin insulating dielectric and forms a permanent silicon link • Disadvantage — can only program once Programmed in a special hardware device An antifuse FPLD may contain 750,000 antifuses, but only about 2% of them typically need to be programmed Takes about 5-10 minutes for each chip Advantages: Small — about the size of a via Low resistance, low capacitance = fast Antifuses can be used in FPLDs to : Connect inputs to cells Connect cells to interconnect Spring 2000, Lecture 16 **Programming Using EPROMS &** EEPROMs (Floating Gates) (cont.) EEPROMs are similar, but are erased electrically • Faster to erase than EPROM, and can be done "in-circuit" Requires larger cell than EEPROM Advantages • Can be programmed repeatedly, in-circuit Very small — requires only vertical space Can be used in FPLDs to : Connect inputs to cells NOR In NOR gate, when ~ OUT transistor is programmed IN1
 - Connect cells to interconnect

(disabled), an input of 1

can not pull output down to VSS

3


Spring 2000, Lecture 16

IN2

INn

Programming Using Static RAMs (SRAMs)

Five Transistor RAM Cell

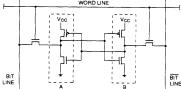


Figure from Field-Programmable Gate Array Technology, Trimberger, Kluwer, 1994

Spring 2000, Lecture 16

Row-Based Layout

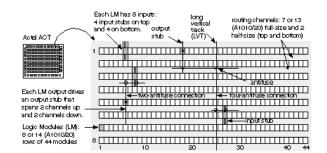


Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

Cells are arranged in rows

- Horizontal channels between rows
- Vertical channels above cells: some short, some long
- Each *channel* contains a fixed number of *tracks*, each track holds one wire
 - Wires may be divided into fixed-length segments within each track
- In figure above, cell inputs connect to horizontal wires, outputs to vertical wires

Programming Using Static RAMs (SRAMs) (cont.)

- Disadvantages:
 - Must load configuration from ROM, disk, etc. on power-up
 - Large requires several transistors

Advantages:

- Can be programmed repeatedly, in-circuit
 - Can be programmed quickly (< 1ms)</p>
- Part has been 100% tested at factory
- Same basic process as CMOS, so quickly takes advantage of new fab processes
 - CMOS also requires less power than circuits requiring pull-up resistors
- SRAMs can be used in FPLDs to :
 - Connect inputs to cells, or even to replace the cell if it's a LUT
 - Connect cells to interconnect

Spring 2000, Lecture 16

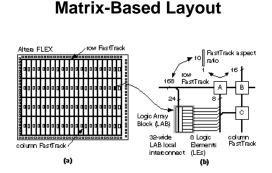


Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

- Cells are arranged in an array (*matrix*)
 - Horizontal and vertical channels between cells
 - Each *channel* contains a fixed number of *tracks*, each track holds one wire
 - In figure above:
 - Cell inputs connect to horizontal tracks
 - Box A connects cell output(s) to horizontal tracks, and box C connects cell output(s) to vertical tracks
 - Box B acts as a switchbox between horizontal and vertical tracks

FPGA Pricing

- Pricing = base price plus adjustments
 - Discount for buying in quantity
 - Discount for buying after process matures
 - Premium for faster speed grade
 - Premium for better package types
 - Premium for industrial or military quality
- Some prices from distributors (2/26/98)
 - Xilinx prices at http://www.marshall.com
 - Biggest = 388 macrocells, fastest = 15ns (75 MHz), \$127 for 1–24, \$82 for >100
 - Smallest = 36 macrocells, slowest = 15ns (75 MHz) \$5 for 1–24, \$3 for >100
 - Fastest = 5ns (200 MHz), 36 macrocells \$19 for 1–24, \$12 for >100

9

Spring 2000, Lecture 16