Antifuse Routing

(a) routing in unconstrained channel.

(b) routing in fully segmented channel.

(c) routing in non-segmented channel.

(d) segmented for 1 -segment routing.

(e) segmented for 2 -segment routing.

Figure from Field-Programmable Gate Array Technology, Trimberger, Kluwer, 1994

Actel ACT Routing Architecture

Figure 3.3.4. Routing Using Long Vertical Track (LVT)

Figure 3.3.5. Routing Using LVTs in another Column

Antifuse Routing (cont.)

- Fully segmented
- Switch at every cross point normally passes signals through vertically and horizontally, but can connect the vertical and horizontal tracks
- Antifuse connects or disconnects the segments of the horizontal channel

Non-segmented

- Excessive area requirements
- 1-segment routing
- Divides the tracks into segments of varying lengths, which allows each net to be routed in a track of more or less the appropriate size
- 2-segment routing
- Allows track segments to be joined

Actel ACT Routing Architecture (cont.)

- An Actel FPGA has rows of cells, with horizontal channels between them, and vertical "channels" called columns
- Cell inputs must come from one of the 2 adjacent horizontal tracks (either figure)
- Cell outputs can attach to:
- A dedicated vertical track called the "output stub" (see bottom figure)
- Output stub spans only two channels above and below the cell
- Long vertical tracks- see top figure, where output goes to LVT instead of its dedicated output segment
- These are vertical segments of varying lengths that can be joined together to form vertical segmented tracks

Actel ACT Routing Architecture (cont.)

Figure from Field-Programmable Gate Array Technology, Trimberger, Kluwer, 1994

- Input segments connect to uncommitted horizontal segment by antifuses
- Horizontal segments connect by antifuses
- Vertical segments pass over the cells

Actel Act2

Actel Act1

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997
■ Fairly simple, fine-grained logic module

- Low delay, small area, very flexible
- Implements basic gates, D latches, etc.
- Can implement many functions using Shannon's Expansion Theorem
- Any combinatorial function of 2 inputs
- Almost any function of 3 inputs, many functions of 4 inputs, some functions of up to 8 inputs
- I/O modules at end of rows \& columns
\qquad
- C -module $=$ combinatorial module
- Act2 c-module provides high fan-in
- Can implement 16 of the 20 four-input gates in the library (Act1 implements 8)
- Implements 766 distinct combinational functions, including 13% more four-input macros and 12% more five-input macros than Act1
- Some loss in ability to implement sequential functions
- S-module = sequential module
- C-module plus two latches
- Can provide rising- or falling-edgetriggered D flip-flop, or high- or low-level transparent D latch, with clear
- Can make it look like a c -module by tying C1 to 1 and C2 to 0
- Need two or more s-modules to build J-K or more complex flip-flops

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997
C-module = combinatorial [sic] module
S-module = sequential module
Note that the timing of a particular logic macro may vary with its implementation

