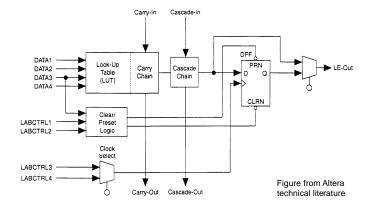
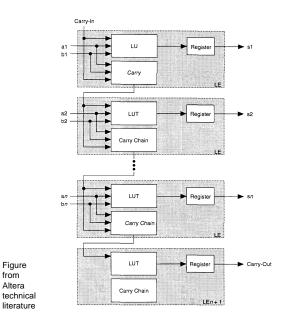

Altera FLEX 8000 Block Diagram

- FLEX 8000 chip contains 26–162 LABs
 - Each LAB contains 8 Logic Elements (LEs), so a chip contains 208–1296 LEs, totaling 2,500–16,000 usable gates
 - LABs arranged in rows and columns, connected by FastTrack Interconnect, with I/O elements (IOEs) at the edges

Spring 2000, Lecture 19


Altera FLEX 8000 Logic Array Block

■ LAB = 8 LEs, plus local interconnect, control signals, carry & cascade chains


Spring 2000, Lecture 19

Altera FLEX 8000 Logic Element

- Each Logic Element (LE) contains:
 - 4-input Look-Up Table (LUT)
 - Can produce any function of 4 variables
 - Programmable flip-flop
 - Can configure as D, T, JR, SR, or bypass
 - Has clock, clear, and preset signals that can come from dedicated inputs, I/O pins, or other LEs
 - Carry chain & cascade chain

Altera FLEX 8000 Carry Chain (Example: n-bit adder)

- Carry chain provides very fast (< 1ns) carry-forward between LEs
 - Feeds both LUT and next part of chain
 - Good for high-speed adders & counters

Spring 2000, Lecture 19

Altera FLEX 8000 Cascade Chain

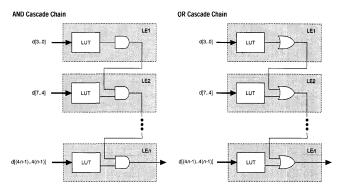
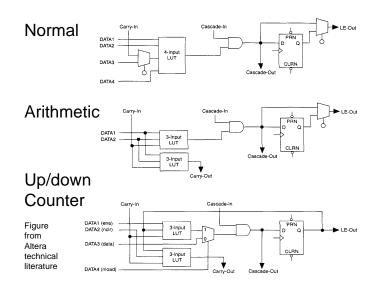


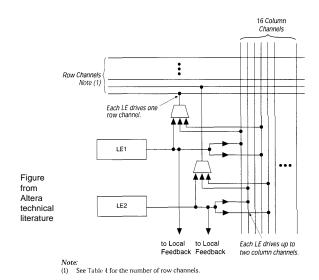
Figure from Altera technical literature


- Cascade chain provides wide fan-in
 - Adjacent LE's LUTs can compute parts of the function in parallel; cascade chain then serially connects intermediate values
 - Can use either a logical AND or a logical OR (using DeMorgan's theorem) to connect outputs of adjacent LEs
 - Each additional LE provides 4 more inputs to the width of the function

Spring 2000, Lecture 19

Altera FLEX 8000 Operating Modes (cont.)

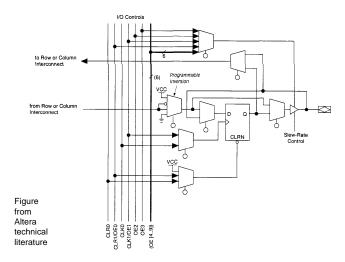
- Normal mode
 - Used for general logic applications, and wide decoding functions that can benefit from the cascade chain
- Arithmetic mode
 - Provides two 3-input LUTs to implement adders, accumulators, and comparators
 - One LUT provides a 3-bit function
 - Other LUT generates a carry bit
- Up/down counter mode
 - Provides counter enable, synchronous up / down control, and data loading options
 - Uses two 3-input LUTs
 - One LUT generates counter data
 - Other LUT generates fast carry bit
 - Use 2-to-1 multiplexer for synchronous data loading, clear and preset for asynchronous data loading


Altera FLEX 8000 LE Operating Modes

- Each mode uses LE resources differently
 - 7 out of 10 inputs (4 data from LAB local interconnect, feedback from register, and carry-in & cascade-in) go to specific destinations to implement the function
 - Remaining 3 provide clock, clear, and preset for register

Spring 2000, Lecture 19

Altera FLEX 8000 FastTrack Interconnect



Device-wide rows and columns

- Each LE in LAB drives 2 column (total 16) channels, which connects... that column
- Each LE in LAB drives 1 row channel, which connects to other LABs in that row
 - 3-to-1 muxs connect either LE outputs or column channels to row channels

7

Altera FLEX 8000 I/O Elements

- Eight I/O Elements (IOEs) are at the end of each row and column
 - Some restrictions on how many row / column channels each IOE connects to
 - Contains a register that can be used for either input or output
 - Associated I/O pins can be used as either input, output, or bidirectional pins

Spring 2000, Lecture 19

10

Altera FLEX 8000 Configuration

- Loading the FLEX 8000's SRAM with programming information is called *configuration*, and takes about 100ms
 - After configuration, the device initializes itself (resets its registers, enables its I/O pins, and begins normal operation)
 - Configuration & initialization = command mode, normal operation = user mode
- Six configuration schemes are available:
 - Active serial FLEX gives configuration EPROM clock signals (not addresses), keeps getting new values in sequence
 - Active parallel up, active parallel down FLEX 8000 gives configuration EPROM sequence of addresses to read data from
 - Passive parallel synchronous, passive parallel asynchronous, passive serial passively receives data from some host

Spring 2000, Lecture 19