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Automated Synthesis of a Digital System
(Electronic Design Automation — EDA)

.

.
INST = M[PC];
PC = PC +1;
DECODE (INST)
9 \ ORA:
    A = A OR M[PC];
41 \ AND:
    A = A AND M[PC];
.
.
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Behavioral Description of a
Very Small Microprocessor

run {main} := BEGIN

repeat BEGIN

IR = M[PC];

PC = PC + 1;

DECODE IR => BEGIN

9\ORA := BEGIN

A = A OR M[PC];

PC = PC + 1;

END,

41\AND := BEGIN

A = A AND M[PC];

PC = PC + 1;

END

END

END

END
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A Behavioral Description
(Part of a Signal Processor, Perhaps)

A differential equation:

The code to solve this
equation could be
written as:

repeat

x1 = x + dx;

y1 = y + (u*dx);

u = u – 5*x*(u*dx)
– 3*y*dx;

x = x1;  y = y1;

while (x1 < a)

That code might parse
as:

1. x1 = x + dx

2. t1 = u * dx

3. y1 = y + t1

4. t2 = 5 * x

5. t3 = t2 * t1

6. t4 = 3 * y

7. t5 = t4 * dx

8. t6 = u – t3

9. u = t6 – t5

10. x1 < a

d 2y

dx2 + 5
dy
dx

x + 3y = 0
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Building a Data Flow Graph (DFG)

1. x1 = x + dx

2. t1 = u * dx

3. y1 = y + t1

4. t2 = 5 * x

5. t3 = t2 * t1

6. t4 = 3 * y

7. t5 = t4 * dx

8. t6 = u – t3

9. u = t6 – t5

10. x1 < a
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Scheduling

n Scheduling is the problem of
determining the control step, or state, in
which each operation will execute
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As-Soon-As-Possible (ASAP)
Scheduling

for each operation oi

if oi has no immediate predecessors

assign oi to cstep 1

else

assign oi to (maximum cstep of any
of oi’s predecessors) + 1
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Another Possible Schedule
(One Multiplier, One ALU (+,–,<))
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The Design Space

n For optimal designs, there is a tradeoff
between:

● time (schedule length), and

● area (ideally total area, but usually
simplified to functional unit area)

n We’d prefer to find optimal designs, but a
heuristic (such as ASAP scheduling) only
guarantees feasible designs
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Three Scheduling Problems

n Scheduling is the problem of
determining the control step, or state, in
which each operation will execute

n The scheduling problem is usually
specified in one of three ways,
depending on the desired goal:

● Time-Constrained Scheduling (TCS) —
for a fixed schedule length, minimize the
number of resources (functional units)

● Resource -Constrained Scheduling
(RCS) — for a fixed number of resources
(functional units), minimize the schedule
length

● Time- and Resource-Constrained
Scheduling (TRCS) — for a fixed
schedule length, and a fixed number of
resources, find a feasible (or optimal)
schedule
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Example of
Resource-Constrained Scheduling

n Schedule this DFG, assuming there are
only 2 multipliers
and 2 ALUs (+,–,<) available

n How could the ASAP algorithm be
modified to solve this problem?
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List Scheduling
(To Solve the RCS Problem)

evaluate the priority of each operation

current-cstep = 1

while there are unscheduled operations

current-cstep = current-cstep + 1

place data-ready operations into the
ready list

sort the ready list in order of priority

while there are data-ready operations in
the ready list that meet the resource
constraints

choose the highest priority data-
ready operation oi from the ready list

assign oi to current-cstep
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Notes on List Scheduling

n Solves the RCS problem

n Basic operation differs from ASAP:

● ASAP — processes operations in a fixed
order

● List Scheduling — processes csteps  in a
fixed order
n Fill one cstep, then go on to the next

n Uses a ready list to keep track of data-
ready operations — those unscheduled
operations that can be scheduled into the
current cstep without violating:

precedence constraints (data dependencies)

resource constraints

● Pick operations from this ready list, and
schedule them into the current cstep until
it is full (i.e., other operations would
violate the resource constraints)
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List Scheduling Example

n Use list scheduling to schedule this DFG
with a resource constraint of 2
multipliers, and 2 ALUs (+,–, <)
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Notes on List Scheduling (cont.)

n As each cstep is processed, the data-
ready operations are sorted according to
priority

● Data-ready operations are then removed
from the ready list and scheduled into the
current cstep based on their priority

n Common priority functions, giving
increased priority to operations with:

● Lower mobility — length of operation’s
schedule interval (ALAP – ALAP + 1)

● Longer path to end of graph

● Greater number of immediate successors

n We will use:

● Primary priority function:  highest priority
to operations with lower mobility

● Secondary priority function:  highest
priority to operations parsed earlier
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Datapath Synthesis

n Datapath synthesis is the problem of:

● Assigning operations to functional units
(ALUs, adders, etc.)

● Assigning values to storage elements
(registers, etc.)

● Allocating interconnections (multiplexors,
buses, wires, etc.)

n A possible datapath for the 1 multiplier /
1 ALU schedule:

* + – <

a u d x x y x1 y1 t1 ,t3,t 5 t2 ,t4, t 6
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Constructive Datapath Synthesis

for each operation oi

consider all possible bindings for oi

select the binding that results in the
smallest increase in cost

Sample costs:

New register = 100 New mux = 30

New wire / const = 5 New mux input = 20
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Synthesizing a Datapath
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One alternative
for operation 3

3 on left ALU
cost = 2 reg, 2 mux, 5 wires

= 200 + 60 + 25
= 285

Another alternative
for operation 3

3 on right ALU
cost = 2 reg, 3 wires

= 200 + 15
= 215
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One alternative
for operation 4

Not allowed!!

Same mult can't do
two operations (2 & 4)
in same control step!

Another alternative
for operation 4

3 on right mult
cost = 2 wires/consts

= 10

Assign operation 1
to an arbitrary ALU

(here, the one on the left)

Assign operation 2
to an arbitrary multiplier

(here, the one on the left)
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Synthesizing a Datapath (cont.)
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