
1 Spring 2000, Lecture 33

Automated Synthesis of a Digital System
(Electronic Design Automation — EDA)

.

.
INST = M[PC];
PC = PC +1;
DECODE (INST)
9 \ ORA:
 A = A OR M[PC];
41 \ AND:
 A = A AND M[PC];
.
.

High-Level
(Behavioral)
Synthesis

Logic
Synthesis

Algorithmic
Level

Behavioral
Description

Register-Transfer
Level

Structural
Design

Chip

2 Spring 2000, Lecture 33

Behavioral Description of a
Very Small Microprocessor

run {main} := BEGIN

repeat BEGIN

IR = M[PC];

PC = PC + 1;

DECODE IR => BEGIN

9\ORA := BEGIN

A = A OR M[PC];

PC = PC + 1;

END,

41\AND := BEGIN

A = A AND M[PC];

PC = PC + 1;

END

END

END

END

3 Spring 2000, Lecture 33

A Behavioral Description
(Part of a Signal Processor, Perhaps)

A differential equation:

The code to solve this
equation could be
written as:

repeat

x1 = x + dx;

y1 = y + (u*dx);

u = u – 5*x*(u*dx)
– 3*y*dx;

x = x1; y = y1;

while (x1 < a)

That code might parse
as:

1. x1 = x + dx

2. t1 = u * dx

3. y1 = y + t1

4. t2 = 5 * x

5. t3 = t2 * t1

6. t4 = 3 * y

7. t5 = t4 * dx

8. t6 = u – t3

9. u = t6 – t5

10. x1 < a

d 2y

dx2 + 5
dy
dx

x + 3y = 0

4 Spring 2000, Lecture 33

Building a Data Flow Graph (DFG)

1. x1 = x + dx

2. t1 = u * dx

3. y1 = y + t1

4. t2 = 5 * x

5. t3 = t2 * t1

6. t4 = 3 * y

7. t5 = t4 * dx

8. t6 = u – t3

9. u = t6 – t5

10. x1 < a

u d x

*

5 x

*

*

3 y

*

*

x d x

x1

+

a

<

y

y1

+

u
t3

t6

–

t5

–

u

d x

1 2

3

4

5

6

7

8

9

10

cont.

t1 t2 t4

5 Spring 2000, Lecture 33

Scheduling

n Scheduling is the problem of
determining the control step, or state, in
which each operation will execute

u d x

*

5 x

*

*

3 y

*

*

x d x

x1

+

a

<

y

y1

+

u
t3

t6

–

t5

–

u

d x

1 2

3

4

5

6

7

8

9

10

cont.

t1 t2 t4

6 Spring 2000, Lecture 33

As-Soon-As-Possible (ASAP)
Scheduling

for each operation oi

if oi has no immediate predecessors

assign oi to cstep 1

else

assign oi to (maximum cstep of any
of oi’s predecessors) + 1

u d x

*

5 x

*

*

3 y

*

*

x d x

x1

+

a

<

y

y1

+

u
t3

t6

–

t5

–

u

d x

1 2

3

4

5

6

7

8

9

10

cont.

t1 t2 t4

7 Spring 2000, Lecture 33

Another Possible Schedule
(One Multiplier, One ALU (+,–,<))

u d x

t1

*

5 x

*

t 2

*

t3 3 y

*

t 4

*

t 5

*

x dx

x1

+

a

<

y t1

y1

+

u t 3

t 6

–

t5

–

u

+ – <

d x

12

3

4

5

6

7 8

9

10

u dx

*

5 x

*

*

3 y

*

*

x dx

x1

+

a

<

y

y1

+

u
t3

t6

–

t5

–

u

d x

1 2

3

4

5

6

7

8

9

10

cont.

t 1 t2 t4

8 Spring 2000, Lecture 33

The Design Space

n For optimal designs, there is a tradeoff
between:

● time (schedule length), and

● area (ideally total area, but usually
simplified to functional unit area)

n We’d prefer to find optimal designs, but a
heuristic (such as ASAP scheduling) only
guarantees feasible designs

are a

t ime

f easible
designs

inf easible
designs

opt imal
designs

9 Spring 2000, Lecture 33

Three Scheduling Problems

n Scheduling is the problem of
determining the control step, or state, in
which each operation will execute

n The scheduling problem is usually
specified in one of three ways,
depending on the desired goal:

● Time-Constrained Scheduling (TCS) —
for a fixed schedule length, minimize the
number of resources (functional units)

● Resource -Constrained Scheduling
(RCS) — for a fixed number of resources
(functional units), minimize the schedule
length

● Time- and Resource-Constrained
Scheduling (TRCS) — for a fixed
schedule length, and a fixed number of
resources, find a feasible (or optimal)
schedule

10 Spring 2000, Lecture 33

Example of
Resource-Constrained Scheduling

n Schedule this DFG, assuming there are
only 2 multipliers
and 2 ALUs (+,–,<) available

n How could the ASAP algorithm be
modified to solve this problem?

u d x

*

5 x

*

*

3 y

*

*

x d x

x1

+

a

<

y

y1

+

u
t3

t6

–

t5

–

u

d x

1 2

3

4

5

6

7

8

9

10

cont.

t1 t2 t4

11 Spring 2000, Lecture 33

List Scheduling
(To Solve the RCS Problem)

evaluate the priority of each operation

current-cstep = 1

while there are unscheduled operations

current-cstep = current-cstep + 1

place data-ready operations into the
ready list

sort the ready list in order of priority

while there are data-ready operations in
the ready list that meet the resource
constraints

choose the highest priority data-
ready operation oi from the ready list

assign oi to current-cstep

12 Spring 2000, Lecture 33

Notes on List Scheduling

n Solves the RCS problem

n Basic operation differs from ASAP:

● ASAP — processes operations in a fixed
order

● List Scheduling — processes csteps in a
fixed order
n Fill one cstep, then go on to the next

n Uses a ready list to keep track of data-
ready operations — those unscheduled
operations that can be scheduled into the
current cstep without violating:

precedence constraints (data dependencies)

resource constraints

● Pick operations from this ready list, and
schedule them into the current cstep until
it is full (i.e., other operations would
violate the resource constraints)

13 Spring 2000, Lecture 33

List Scheduling Example

n Use list scheduling to schedule this DFG
with a resource constraint of 2
multipliers, and 2 ALUs (+,–, <)

u d x

*

5 x

*

*

3 y

*

*

x d x

x1

+

a

<

y

y1

+

u
t3

t6

–

t5

–

u

d x

1 2

3

4

5

6

7

8

9

10

cont.

t1 t2 t4

14 Spring 2000, Lecture 33

Notes on List Scheduling (cont.)

n As each cstep is processed, the data-
ready operations are sorted according to
priority

● Data-ready operations are then removed
from the ready list and scheduled into the
current cstep based on their priority

n Common priority functions, giving
increased priority to operations with:

● Lower mobility — length of operation’s
schedule interval (ALAP – ALAP + 1)

● Longer path to end of graph

● Greater number of immediate successors

n We will use:

● Primary priority function: highest priority
to operations with lower mobility

● Secondary priority function: highest
priority to operations parsed earlier

15 Spring 2000, Lecture 33

Datapath Synthesis

n Datapath synthesis is the problem of:

● Assigning operations to functional units
(ALUs, adders, etc.)

● Assigning values to storage elements
(registers, etc.)

● Allocating interconnections (multiplexors,
buses, wires, etc.)

n A possible datapath for the 1 multiplier /
1 ALU schedule:

* + – <

a u d x x y x1 y1 t1 ,t3,t 5 t2 ,t4, t 6

16 Spring 2000, Lecture 33

Constructive Datapath Synthesis

for each operation oi

consider all possible bindings for oi

select the binding that results in the
smallest increase in cost

Sample costs:

New register = 100 New mux = 30

New wire / const = 5 New mux input = 20

u d x

*

5 x

*

*

3 y

*

*

x d x

x1

+

a

<

y

y1

+

u
t3

t6

–

t5

–

u

d x

1 2

3

4

5

6

7

8

9

10

cont.

t1 t2 t4

17 Spring 2000, Lecture 33

Synthesizing a Datapath

* + – < + – <* 1

x dx

2

u

* + – < + – <* 1,3

x dx

2

u

y t1

* + – < + – <* 1

x dx

2

u

3

y t1

One alternative
for operation 3

3 on left ALU
cost = 2 reg, 2 mux, 5 wires

= 200 + 60 + 25
= 285

Another alternative
for operation 3

3 on right ALU
cost = 2 reg, 3 wires

= 200 + 15
= 215

* + – < + – <* 1

x dx

2,4

u

3

y t1

5

* + – < + – <* 1

x dx

2

u

3

y t1

4

5

One alternative
for operation 4

Not allowed!!

Same mult can't do
two operations (2 & 4)
in same control step!

Another alternative
for operation 4

3 on right mult
cost = 2 wires/consts

= 10

Assign operation 1
to an arbitrary ALU

(here, the one on the left)

Assign operation 2
to an arbitrary multiplier

(here, the one on the left)

18 Spring 2000, Lecture 33

Synthesizing a Datapath (cont.)

* + – < + – <* 1

x dx

2

u

3

y t1

4

5

* + – < + – <* 1

x dx

2,5

u

3

y t1

4

5t2 One alternative
for operation 5

5 on left mult
cost = 1 reg, 2 mux, 5 wires

= 100 + 60 + 25
= 185

* + – < + – <* 1

x dx

2

u

3

y t1

4,5

5 t2 Another alternative
for operation 5

5 on right mult
cost = 1 reg, 2 mux, 5 wires

= 100 + 60 + 25
= 185

continue
this

process

