Types of ASICs

- IC contains a *chip* ("die") cut from a *wafer*
 - Transistors, wires, etc. are built up on the chip in a series of layers (10-15 layers)
 - A *mask* is used to define the components of a layer as they are applied to the chip
- Types of ASICs (and pizza equivalent)
 - Full-custom ASIC
 - Pizza built from scratch, takes a long time to prepare and cook
 - Standard-cell-based ASIC
 - Custom-built from predefined selection, takes a long time to cook
 - Gate-array-based ASIC
 - Pre-cooked crusts, predefined selections, cooks quickly, somewhat cheaper
 - Field-programmable logic device
 - Frozen pizza limited selection, cook it yourself at home, very cheap

Spring 2002, Lecture 02

Standard-Cell-Based ASICs

- Chip is built from pre-defined logic cells (gates, adders, etc.) called standard cells
 - Standard cells are built by someone else using full-custom design techniques
 - Save time, money, and risk by using a predesigned, pretested *cell library*
 - But have to pay for the cell library
 - Also use larger cells (microprocessors, etc.) called mega cells (sometimes cores)

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

Full-Custom ASICs

- Engineer designs some or all of the logic cells, circuit, and layout
- Mostly used:
 - If no pre-designed cells are available (e.g., new or highly specialized circuit)
 - If high-performance, less area, lower power, etc. is needed
- Fabricated in batches of 5 to 30 *wafer lots*, each wafer containing 10–100 chips
- Various technologies used (details later):
 - Bipolar legacy from analog circuits, more consistent characteristics of components across chip / wafer
 - CMOS more widely available, lots of cells and tools, wave of the future (at least for now)

Spring 2002, Lecture 02

Standard-Cell-Based ASICs (cont.)

- Cells fit together like bricks in a wall rows of (variable-width) cells
 - Most interconnect goes in *channels* between rows
 - Some cells may be designated as *feedthroughs* between rows
 - Other *metal layers* also provide interconnect
 - Connection between layers is called a via

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997 Spring 2002, Lecture 02

Gate-Array-Based ASICs

- Transistors are predefined in a fixed pattern on the chip
 - Interconnect is defined by designer and fabricated using a custom mask
 - Designer chooses cells from a gate-array library of predefined, pretested cells
- Chip is partially fabricated (cells, power, etc. added) and then stockpiled
 - When design is received for fabrication, the remaining metal layers are added
 - Cheaper everyone shares cost of producing high volume of initial chip
 - Quick turn-around days, couple weeks
- Variations:

5

- Channeled gate arrays
- Channelless gate arrays

Field Programmable Logic Devices (FPLDs)

- Known by a variety of names:
 - Field-Programmable Gate Array (FPGA)
 - Field-Programmable Logic Device (FPLD)
 - Complex Programmable Logic Device (CPLD)
- Similar to PLDs, but more complex
 - No customized mask layers
 - Some method for programming the base logic cells and the interconnect
 - Core is a regular array of programmable logic cells, each of which contains combinational and sequential logic
 - Programmable interconnect surrounds the logic cells
 - Design turn-around is on the order of hours

Programmable Logic Devices (PLDs)

- Standard ICs, available in standard configurations, sold in high volume
 - But can be configured / programmed to create a specialized device
 - No customized cells or masks, just a single large block of programmable interconnect
 - Fast turn-around time
- Examples

6

- Mask-programmable ROM programmed when ordered
- Programmable ROM programmed electrically, erased electrically or using ultraviolet light, all by customer
- PAL, PLA 2-level sum-of-products and/or array, programmed electrically by customer (blowing fuses in array)

Spring 2002, Lecture 02

Economics of ASICs

- For a given design, which type of ASIC is the most cost-effective?
 - (full-custom) ASIC?
 - MGA (mask-programmable gate array)?
 - CBIC (cell-based integrated circuit = standard-cell-based ASIC)?
- Answer: consider the ASIC as a product, and examine the fixed costs and variable costs
 - total product cost = fixed product cost + variable product cost
 - Fixed product cost is independent of sales volume
 - Fixed product costs amortized per product sold decrease as sales volume increases
 - Variable product cost includes assembly costs and manufacturing costs

8

Spring 2002, Lecture 02

Example of ASIC Economics

- Sample costs:
 - CBIC: fixed cost \$146,000; part cost \$8
 - MGA: fixed cost \$86,000; part cost \$10
 - FPGA: fixed cost \$21,800; part cost \$39

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

Break-even points:

9

- FPGA to MGA is around 2,000 parts
- FPGA to CBIC is around 4,000 parts
- MGA to CBIC is around 20,000 parts

Spring 2002, Lecture 02

10

ASIC Variable Costs

- Wafer size: 6" & 8" common, 12" soon
- 10k gates = small design, 100k = large
- Gate utilization: space used for gates, not used for interconnect
- Defect density is measure of fabrication quality (defect on a die is usually fatal)
- Yield is percentage of usable dies

	FPGA	MGA	OBIC	Units
Wafersize	6	6	6	inches
Wafer cost	1,400	1,300	1,500	\$
Design	10,000	10,000	10,000	gates
Density	10,000	20,000	25,000	gates/sq.cm
Utilization	60	85	100	%
Die size	1.67	0.59	0.40	sq.cm
Die/Wafer	88	248	365	
Defect density	1.10	090	1.00	defects/sq.cm
Yield	65	72	80	%
Diecost	25	7	5	\$
Profitmargin	60	45	50	%
Price/gate	0.39	0.10	0.08	cents
Part cost	\$39	\$10	\$8	
Figure from Ap	plication-Specific	Integrated Circ	<i>uits</i> , Smith, Ac	ldison-Wesley, 1997
				Spring 2002, Lecture

ASIC Fixed Costs

- Design: estimate of designer productivity
- Production test: make sure the IC works
- Non-recurring engineering (NRE): work done by ASIC vendor — developing mask, production tests, prototypes, etc.

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997 Spring 2002, Ledure 02