Topic 7: Combinational Circuits

Readings:

•Patterson & Hennessy Appendix B

Goals

•Boolean algebra

- •Sum of products and products of sum form
- •Karnaugh maps

Physical to Logical Level

4 Representations

Circuits and gate diagrams correspond one to one
We can map gate diagrams to TTs. How about TT's into gate diagrams?
Need a tool: boolean algebra
How to manipulate TTs ?
Translate to boolean algebra and manipulate

Boolean Algebra Algebra: Set of Elements, Set of Functions, Set of Axioms •Elements: {0,1} •Functions: AND (like multiply), OR (like add), NOT (bar) •Identities: • or = 0 1 + x = 1	Proving Boolean Equations Method #1: Algebraic method $(x+y)(x+z) = x+yz$ Method #2: Truth tables $(x+y)(x+z) = x+yz$
1x = x 0+x = x • Operator Axioms • $xx = x x+x = x$ $xx = 0 x+x = 1$ • AND and OR are commutative: • $A+B = B+A AB = BA$ • AND and OR show distribution because	X Y Z X+Y X+Z LHS YZ RHS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
 AND and OR obey distributive law: A[B+C] = AB+AC A+(BC) = (A+B)(A+C) AND takes precedence over OR A+BC = A+(BC) AND and OR obey associative law: A+(B+C) = (A+B)+C A(BC) = (AB)C DeMorgan's laws 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Generating Boolean Equations from Truth Tables •Find all rows with F=1 •AND them together to make a product term. These are called minterms. •OR the minterms together $F = \overline{ABC} + A\overline{BC} + ABC$ A B C F 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 \overline{ABC} 1 0 0 1 ABC 1 0 1 0 1 1 1 ABC	Boolean Equations from Truth Tables (cont.) Another Example $F = \overline{ABCD} + \overline{ABCD} +$
Canonical Form • Truth Table provides a signature for the boolean function. Is there an equivalent algebraic signature? Sum of Products form (SOP). • Also known as disjoint normal form or minterm expansion. • This is what we just did in the last two examples. Product of Sums form (POS). AKA maxterm expansion. • Find SOP for rows where F=0: Invert the entire expression, and apply De Morgan's law to get POS. Each sum is called a maxterm. A B C F 0 0 0 0 0 A+B+C 0 0 1 0 A+B+C 0 1 1 0 0 A+B+C 1 0 0 0 1 \overline{A} +B+C 1 1 0 0 \overline{A} +B+C 1 1 1 1	Canonical Form (cont.) A B C D F 0 0 0 0 0 A+B+C+D 0 0 0 1 1 0 0 1 0 0 A+B+C+D 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 A+B+C+D 0 1 1 1 0 A+B+C+D 0 1 1 1 0 A+B+C+D 0 1 1 1 1 (A+B+C+D)(A+B+C+D)(A+B+C+D) 0 1 1 1 1 (A+B+C+D)(A+B+C+D)(A+B+C+D) 0 1 1 1 1 (A+B+C+D)(A+B+C+D)(A+B+C+D) 1 0 0 0 1 1 0 0 1 0 A+B+C+D 1 0 1 0 1 1 0 0 1 0 A+B+C+D 1 0 1 0 1 1 0 0 1 0 A+B+C+D 1 1 1 0 0 A+B+C+D 1 1 1 0 0 A+B+C+D 1 1 1 1 1 A+B+C+D 1 1 1 1 1 A+B+C+D 1 1 1 1 A+B+C+D 1 1 1 A+B+C+D 1 1 1 1 A+B+

Implementing SOP using only NAND gates

Why just NAND gates?

AND gates are usually just NAND gates with an inverter.INVERTER can be made by wiring together inputs of NAND gates

"Pushing a Bubble" through an AND changes it to an OR, and vice versa

Canonical Form is not minimal form

Example:

- A B C F 0 0 0 0

 $P = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$

F = A + BC

Question: how to find minimal form?

Implementing SOP using only NOR gates

What goes for NAND gates, goes for NOR gates:

•Inverters can be made by wiring gates

- •OR gate is sometimes implemented as NOR plus INVERTER
- •Unfortunately, circuits are not very clean

What about POS using only NOR? $F = (B + \bar{C})(\bar{B} + C)(A + C)$

Finding the minimal form

Goals is to reduce the number of literals in a boolean equation.A literal is a variable and its complement in an equation.A1: Use Boolean Algebra. Hard to know when you're "done."A2: Use Karnaugh maps

Karnaugh Maps

Graphical way to unify terms

Example #1: **F** = AB + AB

More Karnaugh Maps

Example #2: F = ABC + ABC + ABC + ABC + ABC

Goal:

•circle as few rectangles of 1's as possible, covering all 1's •but: rectangle sides must be power-of-two in size (e.g., 1x1, 1x2, 2x2, 1x4, 2x4, 4x4)

More Karnaugh Maps

Rules of thumb for finding minimal expressions

Suppose I have this K-Map

•Largest subcube to smallest? •Smallest subcube to largest?

5 and 6 variable K-maps

Just a stack of 4-var K-maps

Mapping real problems to boolean equations

"Design a circuit for a digital clock that computes the next hour on its output, given the current hour as input."

Assumption: Hours are represented as 4 bit binary number

Digital Clock Example

Karnaugh

Maps:

not the best!

Digital Clock Circuit

Summary

