Topic 7: Combinational Circuits

Readings:

-Patterson \& Hennessy Appendix B

Goals

-Boolean algebra

- Sum of products and products of sum form
-Karnaugh maps

Physical to Logical Level

4 Representations

-Circuits and gate diagrams correspond one to one

- We can map gate diagrams to TTs. How about TT's into gate diagrams?
Need a tool: boolean algebra
-How to manipulate TTs ?
Translate to boolean algebra and manipulate

Boolean Algebra
Algebra: Set of Elements, Set of Functions, Set of Axioms
-Elements: $\{0,1\}$
-Functions: AND (like multiply), OR (like add), NOT (bar)
-Identities:
$0 x=0 \quad 1+x=1$
$1 X=x \quad 0+x=x$

- Operator Axioms
- $x \underline{x}=x \quad x+\underline{x}=x$
$x \bar{X}=0 \quad x+\bar{X}=1$
-AND and OR are commutative:
- $A+B=B+A, A B=B A$
-AND and OR obey distributive law:
- $A(B+C]=A B+A C$
$A+(B C)=(A+B)(A+C)$
-AND takes precedence over OR
- $A+B C=A+(B C)$
-AND and OR obey associative law:
- $A+(B+C)=(A+B)+C$
$A(B C)=(A B) C$
DeMorgan's laws

Proving Boolean Equations
Method \#1: Algebraic method $\quad(x+\eta)(x+z)=x+y z$

Method \#2: Truth tables $(x+y(x+z)=x+y z$

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\mathbf{X}+\mathbf{Y}$	$\mathbf{X}+\mathbf{Z}$	$\mathbf{L H S}$	$\mathbf{Y Z}$	$\mathbf{R H S}$
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Generating Boolean Equations from Truth Tables

-Find all rows with $\mathrm{F}=1$
-AND them together to make a product term. These are called minterms.

- OR the minterms together $\mathrm{F}=\overline{\mathrm{ABC}}+\mathrm{ABC}+\mathrm{ABC}$

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$\overline{\mathrm{~A}} \mathrm{BC}$
1	0	0	1	ABC
1	0	1	0	
1	1	0	0	
1	1	1	1	ABC

Boolean Equations from Truth Tables (cont.)

Another Example $\mathrm{F}=\overline{\mathrm{ABCD}}+\overline{\mathrm{AB}} \mathrm{CD}+\overline{\mathrm{AB}} \overline{\mathrm{CD}}+\mathrm{ABCD}+\mathrm{ABCD}+$

```
A BC D F
0 0 0 0 0
0
0}00110
0
0
0 1 0 1 0
0}111110
lllllll}\begin{array}{lllll}{1}&{1}&{1}&{1}&{\overline{A}BCD}
1 0 0 0 1 ABCD
1
1 0 1 0 1 ABCD
1
1 1 0 0 1 ABCD
1 1 0 1 0
1111 0 0
111111 1 ABCD
```


Canonical Form (cont.)

ABCDF

$00000 \quad \mathrm{~A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$
00011
$001000 \quad \mathrm{~A}+\mathrm{B}+\overline{\mathrm{C}}+\mathrm{D}$
00111
01001
$\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & \mathrm{~A}+\overline{\mathrm{B}}+\mathrm{C}+\overline{\mathrm{D}}\end{array}$
$(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D})(\mathrm{A}+\mathrm{B}+\overline{\mathrm{C}}+\mathrm{D})(\mathrm{A}+\overline{\mathrm{B}}+\mathrm{C}+\overline{\mathrm{D}})$
$011000 \quad \mathrm{~A}+\overline{\mathrm{B}}+\mathrm{C}+\mathrm{D}$
$(\mathrm{A}+\overline{\mathrm{B}}+\mathrm{C}+\mathrm{D})(\overline{\mathrm{A}}+\mathrm{B}+\mathrm{C}+\overline{\mathrm{D}})(\overline{\mathrm{A}}+\overline{\mathrm{B}}+\mathrm{C}+\overline{\mathrm{D}})$
$(\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}+\mathrm{D})$

Product of Sums form (POS). AKA maxterm expansion
-Find SOP for rows where $\mathrm{F}=0$: Invert the entire expression, and apply De Morgan's law to get POS. Each sum is called a maxterm.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}		
0	0	0	0	$\mathrm{~A}+\mathrm{B}+\mathrm{C}$	
0	0	1	0	$\mathrm{~A}+\mathrm{B}+\overline{\mathrm{C}}$	$(\mathrm{A}+\mathrm{B}+\mathrm{C})(\mathrm{A}+\mathrm{B}+\overline{\mathrm{C}})(\mathrm{A}+\overline{\mathrm{B}}+\mathrm{C})$
0	1	0	0	$\mathrm{~A}+\overline{\mathrm{B}}+\mathrm{C}$	$(\overline{\mathrm{A}}+\mathrm{B}+\overline{\mathrm{C}})(\overline{\mathrm{A}}+\overline{\mathrm{B}}+\mathrm{C})$
0	1	1	1		
1	0	0	1	$\overline{\mathrm{~A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}$	
1	0	1	0	$\overline{\mathrm{~A}}+\overline{\mathrm{C}}$	
1	1	0	0	$\overline{\mathrm{~A}}+\overline{\mathrm{B}}+\mathrm{C}$	
1	1	1	1		

01111
10001
$100100 \quad \overline{\mathrm{~A}}+\mathrm{B}+\mathrm{C}+\overline{\mathrm{D}}$
10101
10111
11001
$11010 \quad \overline{\mathrm{~A}}+\overline{\mathrm{B}}+\mathrm{C}+\overline{\mathrm{D}}$
$11100 \quad \overline{\mathrm{~A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}+\mathrm{D}$

Implementing SOP using only NAND gates

Why just NAND gates?
-AND gates are usually just NAND gates with an inverter.
-INVERTER can be made by wiring together inputs of NAND gates

"Pushing a Bubble" through an AND changes it to an OR, and vice versa

Implementing SOP using only NOR gates

What goes for NAND gates, goes for NOR gates:

- Inverters can be made by wiring gates
-OR gate is sometimes implemented as NOR plus INVERTER
-Unfortunately, circuits are not very clean

What about POS using only NOR? $\bar{F}=(\bar{B}+\bar{C})(\bar{B}+c)(A+C)$

Canonical Form is not minimal form

Example:

A B C F
0000
0010
0100
0111
1001
1011
1101
1111
$\mathrm{F}=\bar{A} B C+A \bar{A} \bar{C}+A \bar{B} C+A B \bar{C}+A B C$
$F=A+B C$

Question: how to find minimal form?

More Karnaugh Maps

Example \#2: $r-A B C+A \bar{B} \bar{C}+A \bar{B} C+A B \bar{C}+A D C$

Goal:

- circle as few rectangles of 1's as possible, covering all 1's -but: rectangle sides must be power-of-two in size (e.g., $1 \mathrm{x} 1,1 \mathrm{x} 2,2 \mathrm{x} 2,1 \mathrm{x} 4,2 \mathrm{x} 4,4 \mathrm{x} 4$)

More Karnaugh Maps

A B C D F
00000
$\begin{array}{lllll}0 & 0 & 0 & 1 & 1\end{array}$
001100
$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$
01001
$\begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}$
011100
$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$
10001
10010
10101
$\begin{array}{lllll}1 & 0 & 1 & 1\end{array}$
11001
11010
11100
11111

5 and 6 variable K-maps

Just a stack of 4-var K-maps

Mapping real problems to boolean equations

"Design a circuit for a digital clock that computes the next hour on its output, given the current hour as input."

Assumption: Hours are represented as 4 bit binary number

Digital Clock Circuit

Digital Clock Example

Karnaugh
Maps:

not the
best!

Summary

