
Design Entry

- Purpose of design entry is to enter a schematic for use by a set of Electronic Design Automation tools
 - Simulation, testing, fabrication
 - Documentation
- A circuit schematic shows the interconnection of structural elements that make up a circuit
 - Doesn't capture everything about design (e.g., doesn't show contents of ROMs)
 - EDA tools need an electronic (usually ASCII) version of that schematic, called a netlist
- Schematic capture
 - Direct entry of the circuit schematic
 - More "bookkeeping" than "automation"

Spring 2002, Lecture 05

Graphic Editor

Figure from Altera technical literature

- Enter cells from various predefined component libraries, or user-defined cells
- Connect cells using nets, buses, or name
- "Smart" selection tool automatically becomes proper tool for task at hand

Spring 2002, Lecture 05

Schematic Entry

- Circuit schematics are drawn on schematic sheets, which come in standard sizes (8.5x11, 11x17, etc.)
 - Each sheet includes a labeled border, and a block listing the circuit name, designer's name, date, etc.
 - There are standards for most of the commonly-used symbols
- Terms used in circuit schematics:

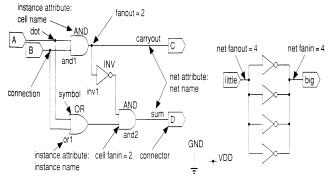


Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

Spring 2002, Lecture 05

Cell Library

- Components (sometimes called modules) in an ASIC schematic are chosen from a library of cells
 - ASIC vendors provide a schematic library of primitive gates for schematic entry
- Problem no standard exists
 - Individual vendors might use different names to refer to a 2-input xor gate
 - May be some variation on TTL 7400series names:
 - 2-input NAND = 7400
 - 2-input AND = 7408
 - 2-input OR = 7432
 - 2-input XOR = 7486
 - May be more descriptive:
 - nand2, xor3, ...
 - Behavior may vary
 - Which input does 2-input multiplexor select when select input S = 0?

Spring 2002, Lecture 05

Names

- Each cell, whether a primitive cell or a subschematic, has a name
 - Each use of a cell in a schematic is a different instance of that cell, and is given a unique instance name
- Each cell is represented by a picture, or icon, called a symbol
 - Primitive cells (e.g., AND gates) have standardized non-rectangular symbols
 - Subschematics are represented by special custom icons

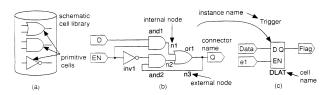


Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

Spring 2002, Lecture 05

Hierarchical Design

- Hierarchy is used to reduce the size and complexity of the schematic
 - The alternative drawing all symbols on one giant schematic with no hierarchy is called a *flat schematic*
 - Flat schematics are impractical to work with for even thousands of components
 - Flat netlists, however, are occasionally used when the hierarchy isn't relevant

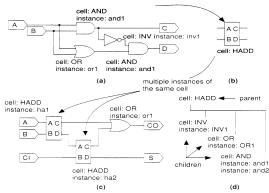


FIGURE 9.3 Schematic example showing hierarchical design. (a) The schematic of a half-adder, the subschematic of cell HADD. (b) A schematic symbol for the half adder. (c) A schematic that uses the half-adder cell. (d) The hierarchy of cell HADD.

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997
Spring 2002, Lecture 05

Nets

- Cell instances have *terminals*, also known as pins, connectors, or signals, that are the inputs and outputs of the cell
- Cell instances are connected by *wire segments*, commonly called *nets*
 - A local (internal) net is internal to a cell
 - An external net connects to the inputs and / or outputs of the cell
- Nets may sometimes be collected together into buses for convenience
 - May be represented by a thicker line on the schematic, with some indication of number of nets involved
 - Individual nets can still be accessed when necessary

6 Spring 2002, Lecture 05

Altera MAX+PLUS II Overview

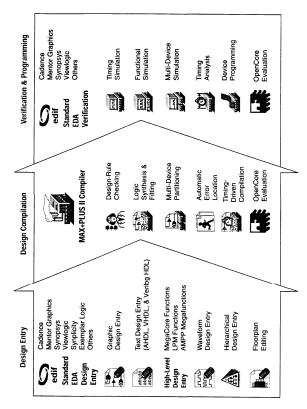


Figure from Altera technical literature

The "Chiptrip" Tutorial Example

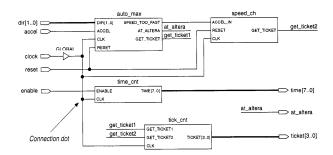


Figure from Altera technical literature

- Simulates an auto driving around town
 - auto_max AHDL state machine that keeps track of location of auto and acceleration at that point in time, gives ticket if you accelerate on small roads
 - speed_ch waveform state machine that gives ticket if you accelerate for a second time
 - tick_cnt counter that counts tickets
 - time_cnt AHDL counter that keeps track of time taken to reach Altera

Spring 2002, Lecture 05

10

Graphic Editor

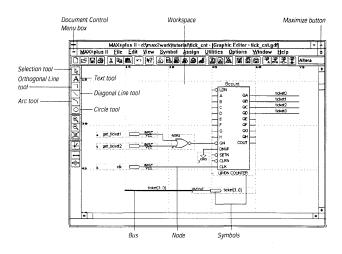


Figure from Altera technical literature

- Enter cells from various predefined component libraries, or user-defined cells
- Connect cells using nets, buses, or name
- "Smart" selection tool automatically becomes proper tool for task at hand

Spring 2002, Lecture 05

Waveform Editor

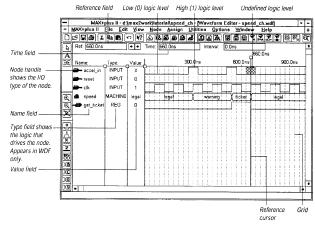
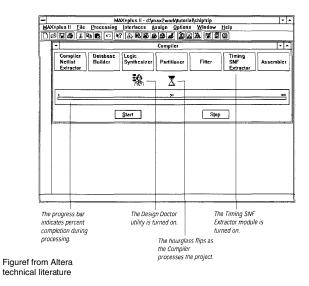



Figure from Altera technical literature

- Can contain logical and state machine inputs; combinational, registered, and state machine outputs; and "buried" nodes to help define desired outputs
 - Can specify state names for state machines
- Can compare desired and actual outputs

Compiler

- Checks for design entry errors, builds a single large flat database
- Logic synthesis to minimize resource usage (see Assign/Global Project Logic Synthesis), partitioner and fitter to match to available devices

Spring 2002, Lecture 05

Simulation Results

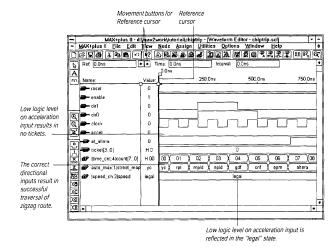


Figure from Altera technical literature

- Use waveform editor to specify simulation inputs
- Simulate, then view results in waveform editor (as shown above)
 - Simulate individual or grouped nodes (particularly good for state machines)

13 Spring 2002, Lecture 05

Floorplan Editor

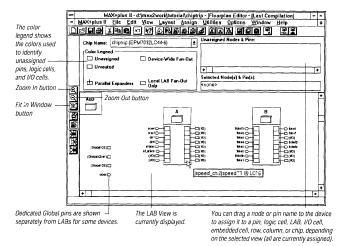


Figure from Altera technical literature

- Device view shows pins, LAB view shows LABs, equations, I/O, and routing
- Can use to edit assignments
- After compilation, get information on most congested area of chip, number of expanders used within each LAB

Spring 2002, Lecture 05