
Implementing a Truth Table Using An And-Or Structure (Review)

 Given a truth table, we can use a Karnaugh map to find the minimum 2level SOP implementation

x = a'bd' + a'c'd'

Spring 2002, Lecture 10

PLAs

- A 2-level *and-or* structure is replicated many times in a <u>programmable</u> array called a *PLA* (*programmable logic array*)
 - Parts of a CPU's datapath or next-state logic can be built out of PLAs
 - Small circuits can be built out of PLAs
- At the input of each gate, there's a "fuse" which can be left whole, or broken
 - So the designer can control which inputs go to each and gate, and which outputs of the and gates go to each or gate
- A PLA can be either
 - Mask programmable customer orders a programmed PLA from the manufacturer
 - Field programmable customer can program PLA (once)

Spring 2002, Lecture 10

PLAs

■ A 2-level *and-or* structure is replicated many times in a <u>programmable</u> array called a *PLA* (*programmable logic array*)

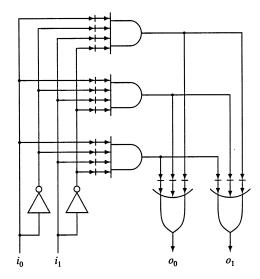


Diagram from Computer Systems, Maccabe, Irwin 1993

 This PLA has 2 inputs, 2 outputs, and can represent up to 3 product terms

PLA Example

■ This is an *abstract* diagram of a PLA with 6 inputs, 4 outputs, which can represent up to 12 product terms

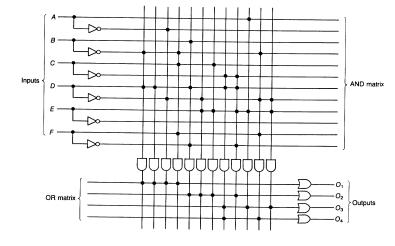


Diagram from Digital Design, Johnson & Karim, PWS-Kent 1987

Try the Java KMap->PLA animation at http://tech-www.informatik.unihamburg.de/applets/kvd

Field-Programmable Logic Device

- The next evolutionary step beyond the PLA is the field-programmable logic device (FPLD), also called the:
 - Field-programmable gate array (FPGA)
 - Complex programmable logic device (CPLD)
- FPLD characteristics
 - Based on either an array of PLA-like andor structures, or on look-up tables
 - Usually includes connections from these structures to 4 nearest neighbors
 - May include long connections across chip
 - May include D (or more complex) flipflops, to more easily build sequential circuits, possibly even RAM
 - Many can be "programmed" repeatedly
 - Available in different sizes up to 500,000 gates (100MHz, 2.5 volt, 0.25µ, 5 metal)

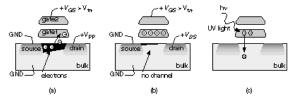
Sprina 2002. Lecture 10

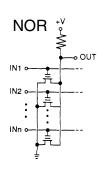
Programming Using Antifuses

- An *antifuse* is normally open ("off"); when enough current (5-15mA) passes through it it closes ("on")
 - Current melts a thin insulating dielectric and forms a permanent silicon link
 - Disadvantage can only program once
 - Programmed in a special hardware device
 - An antifuse FPLD may contain 750,000 antifuses, but only about 2% of them typically need to be programmed
 - Takes about 5-10 minutes for each chip
- Advantages:
 - Small about the size of a via
 - Low resistance, low capacitance = fast
- Antifuses can be used in FPLDs to:
 - Connect inputs to cells
 - Connect cells to interconnect

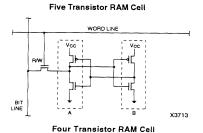
Sprina 2002. Lecture 10

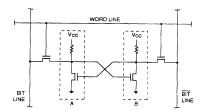
Programming Using EPROMs & EEPROMs (Floating Gates)




Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

EPROM programming & operation:


- To program: a high (>12V) programming voltage V_{PP} is applied to the drain, causing electrons to "jump" onto the floating gate (gate1)
 - The electrons on gate1 raise the threshold voltage V, enough that the programmed transistor is always off
- To erase: the transistor is exposed to UV light, which provides enough energy for the electrons stuck on gate1 to jump back onto the bulk, returning the transistor to normal operation
- Can be reprogrammed many times


Programming Using EPROMS & EEPROMs (Floating Gates) (cont.)

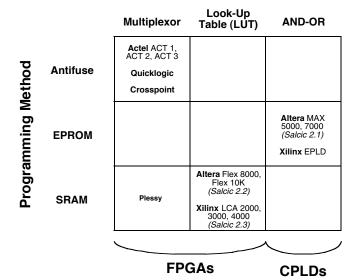
- EEPROMs are similar, but are erased electrically
 - Faster to erase than EPROM, and can be done "in-circuit"
 - Requires larger cell than EPROM
- Advantages
 - Can be programmed repeatedly, in-circuit
 - Fairly small requires only 1 transistor
- Can be used in FPLDs to :
 - Connect inputs to cells
 - In NOR gate, when transistor is programmed (disabled), an input of 1 can not pull output down to VSS
 - Connect cells to interconnect

Programming Using Static RAMs (SRAMs)



Figure from Field-Programmable Gate Array Technology, Trimberger, Kluwer, 1994

9 Spring 2002, Lecture 10


Programming Using Static RAMs (SRAMs) (cont.)

- Disadvantages:
 - Must load configuration from ROM, disk, etc. on power-up
 - Large requires several transistors
- Advantages:
 - Can be programmed repeatedly, in-circuit
 - Can be programmed quickly (< 1ms)
 - Part has been 100% tested at factory
 - Same basic process as CMOS, so quickly takes advantage of new fab processes
 - CMOS also requires less power than circuits requiring pull-up resistors
- SRAMs can be used in FPLDs to:
 - Connect inputs to cells, or even to replace the cell if it's a LUT
 - Connect cells to interconnect

Spring 2002, Lecture 10

Types of FPLDs

Type of Base Cell

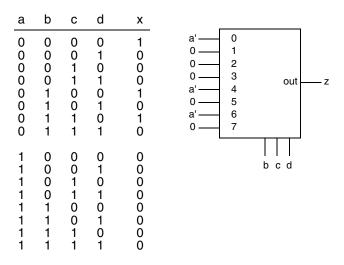
■ Layout / routing

Row-based: Actel

Matrix-based: Altera, Quicklogic, Xilinx

Implementing a Truth Table Using a Multiplexor

 Besides and-or structures, another alternative is to use a 4-input multiplexor


а	b	С	d	x		
0 0 0 0 0 0	0 0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1 0	1 0 0 0 1 0 1	1 — 0 0 — 1 0 — 2 0 — 3 1 — 4 0 — 5 1 — 6 0 — 7	out —— z
1 1 1 1 1 1	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1	0 0 0 0 0	0 — 9 0 — 10 0 — 11 0 — 12 0 — 13 0 — 14 0 — 15	d

■ Any function of N inputs can be implemented using a 2^N to 1 multiplexor

10

Implementing a Truth Table **Using a Multiplexor (cont.)**

■ An alternative is to "fold" the truth table, and tie each input to either 1, 0, or the MSB, and only use a 3-input multiplexor

- Any function of N inputs can be implemented using a 2^{N-1} to 1 multiplexor
 - Some FPLDs are based on multiplexors. and attach simple gates to selector lines

Sprina 2002. Lecture 10

Implementing a Truth Table **Using a ROM**

■ Yet another alternative is to use a ROM

a b c d

data

а	b	С	d	х	ماماء	al a i	_
					addr.	uai	a
0	0	0	0	1	0	1	
0	Ō	Ō	1	0	1	0	
0	0	1	0	0	2	0	
0 0 0	0	1	1	Ō	3	0	
0	1	0	0	1	4	1	
0	1	Ō	1	0	5	0	
Ŏ	1	Ĭ	Ó	ĺ	6	1	
Ö	1	1	Ť	Ó	7	0	
•	-	-	-	-	8	0	
1	0	0	0	0	9	0	
1	Ö	Ö	ĺ	Ö	10	0	
1	Ŏ	ĭ	Ò	Ö	11	0	
1	Ö	1	Ť	Ö	12	0	
1	1	Ó	Ó	Ö	13	0	
1	1	Ŏ	ĭ	Ŏ	14	0	
1	1	ĭ	Ò	Ŏ	15	0	
1	1	1	Ť	Ö		_	г
•	•		•	J			

- Any function of N inputs can be implemented using a 2Nx 1 bit ROM
 - Some FPLDs are based on static RAMs (SRAMS) loaded at power-up; these are said to use look-up tables (LUTs)

Sprina 2002. Lecture 10

Different Implementation Styles

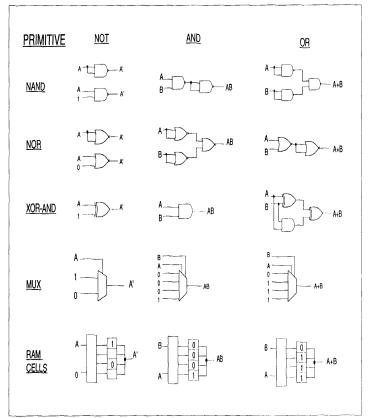


Diagram from Digital Design Using Field Programmable Gate Arrays, Chan & Mourad, Prentice Hall 1994

13

Spring 2002, Lecture 10