

Spring 2002, Lecture 11

Figure from Field-Programmable Gate Array Technology, Trimberger, Kluwer, 1994 Spring 2002, Lecture 11

Antifuse Routing (cont.)

- Fully segmented
 - Switch at every cross point normally passes signals through vertically and horizontally, but can connect the vertical and horizontal tracks
 - Antifuse connects or disconnects the segments of the horizontal channel
- Non-segmented
 - Excessive area requirements
- 1-segment routing
 - Divides the tracks into segments of varying lengths, which allows each net to be routed in a track of more or less the appropriate size
- 2-segment routing
 - Allows track segments to be joined

Actel ACT Routing Architecture (cont.)

- An Actel FPGA has rows of cells, with horizontal channels between them, and vertical "channels" called columns
- Cell inputs must come from one of the 2 adjacent horizontal tracks (either figure)
- Cell outputs can attach to:
 - A dedicated vertical track called the "output stub" (see bottom figure)
 - Output stub spans only two channels above and below the cell
 - Long vertical tracks— see top figure, where output goes to LVT instead of its dedicated output segment
 - These are vertical segments of varying lengths that can be joined together to form vertical segmented tracks

Actel ACT Routing Architecture

Figure 3.3.4. Routing Using Long Vertical Track (LVT)

Figure 3.3.5. Routing Using LVTs in another Column

Figure from Field-Programmable Gate Array Technology, Trimberger, Kluwer, 1994

Spring 2002, Lecture 11

Actel ACT Routing Architecture (cont.)

Figure from Field-Programmable Gate Array Technology, Trimberger, Kluwer, 1994

- Input segments connect to uncommitted horizontal segment by antifuses
 - Horizontal segments connect by antifuses
- Vertical segments pass over the cells

Spring 2002, Lecture 11

Spring 2002, Lecture 11