Types of FPLDs

Layout / routing

- Row-based: Actel
- Matrix-based: Altera, Quicklogic, Xilinx

Matrix-Based Layout

(a)

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997
Cells are arranged in an array (matrix)

- Horizontal and vertical channels between cells
- Each channel contains a fixed number of tracks, each track holds one wire
- In figure above:
- Cell inputs connect to horizontal tracks
- Box A connects cell output(s) to horizontal tracks, and box C connects cell output(s) to vertical tracks
- Box B acts as a switchbox between horizontal and vertical tracks

Row-Based Layout

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

- Cells are arranged in rows

- Horizontal channels between rows
- Vertical channels above cells: some short, some long
- Each channel contains a fixed number of tracks, each track holds one wire
- Wires may be divided into fixed-length segments within each track
- In figure above, cell inputs connect to horizontal wires, outputs to vertical wires

Antifuse Routing

(a) routing in unconstrained channel.

(b) routing in fully segmented channel.

(c) routing in non-segmented channel.

(d) segmented for 1 -segment routing.

(e) segmented for 2 -segment routing.

Antifuse Routing

 (cont.)Fully segmented

- Switch at every cross point normally passes signals through vertically and horizontally, but can connect the vertical and horizontal tracks
- Antifuse connects or disconnects the segments of the horizontal channel

Non-segmented

- Excessive area requirements

1-segment routing

- Divides the tracks into segments of varying lengths, which allows each net to be routed in a track of more or less the appropriate size

2-segment routing

- Allows track segments to be joined

Actel ACT Routing Architecture

Figure 3.3.4. Routing Using Long Vertical Track (LVT)

Figure 3.3.5. Routing Using LVTs in another Column

Figure from Field-Programmable Gate Array Technology, Trimberger, Kluwer, 1994

- An Actel FPGA has rows of cells, with horizontal channels between them, and vertical "channels" called columns

■ Cell inputs must come from one of the 2 adjacent horizontal tracks (either figure)

Cell outputs can attach to:

- A dedicated vertical track called the "output stub" (see bottom figure)
- Output stub spans only two channels above and below the cell
- Long vertical tracks- see top figure, where output goes to LVT instead of its dedicated output segment
- These are vertical segments of varying lengths that can be joined together to form vertical segmented tracks

Actel ACT Routing Architecture (cont.)

Figure from Field-Programmable Gate Array Technology, Trimberger, Kluwer, 1994

- Input segments connect to uncommitted horizontal segment by antifuses
- Horizontal segments connect by antifuses
- Vertical segments pass over the cells

Actel Act1

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997
Fairly simple, fine-grained logic module

- Low delay, small area, very flexible
- Implements basic gates, D latches, etc.
- Can implement many functions using Shannon's Expansion Theorem
- Any combinatorial function of 2 inputs
- Almost any function of 3 inputs, many functions of 4 inputs, some functions of up to 8 inputs

I/O modules at end of rows \& columns

Actel Act2 (cont.)

C-module $=$ combinatorial module

- Act2 c-module provides high fan-in
- Can implement 16 of the 20 four-input gates in the library (Act1 implements 8)
- Implements 766 distinct combinational functions, including 13% more four-input macros and 12% more five-input macros than Act1
- Some loss in ability to implement sequential functions

S-module $=$ sequential module

- C-module plus two latches
- Can provide rising- or falling-edgetriggered D flip-flop, or high- or low-level transparent D latch, with clear
- Can make it look like a c-module by tying C1 to 1 and C2 to 0
- Need two or more s-modules to build J-K or more complex flip-flops

