

APEX Embedded System Blocks (ESBs)

- Each ESB can act as a macrocell and provide product terms
 - Each ESB gets 32 inputs from local interconnect, from adjacent LAB or MegaLAB interconnect
 - In this mode, each ESB contains 16 macrocells, and each macrocell contains 2 product terms and a programmable register (parallel expanders also provided)
- Each ESB can also act as a memory block (dual-port RAM, ROM, FIFO, or CAM memory) configured in various sizes
 - Inputs from adjacent local interconnect, which can be driven from MegaLAB or FastTrack interconnect

5

7

 Outputs to MegaLAB and FastTrack, some outputs to local interconnect

Spring 2002, Lecture 22

- Each Combinational Logic Block (CLB):
 - Two 4-input LUTs (called "function generators" F and G)
 - A 3-input LUT, which has 1–3 of its inputs coming from outside the CLB
 - CLB can implement two 4-variable functions, one 5-variable function, or some functions of up to 9 variables
 - Two edge-triggered D flip-flops

Figure from Field-Programmable Gate Array Technology, Trimberger, Kluwer, 1994

- Based on LUTs and SRAM programming
- Xilinx XC4000 chip contains a matrix of Combinational Logic Blocks (CLBs)
 - Chips range from 10x10 to 56x56 CLBs
 - Each CLB can be used for logic or RAM
 - Used entirely as logic, a chip provides 3,000–85,000 gates
 - Used entirely as RAM, a chip provides 3,200–100,352 bits of RAM
 - With "typical" usage of 20–30% RAM, a chip provides 2,000–55,000 gates

Spring 2002, Lecture 22

Xilinx XC4000 CLB Carry Logic

Figure from Xilinx technical literature

- Fast carry logic provides carry and borrow signals
 - Not shown on previous slide, this computation occurs between CLB inputs and F & G LUTs
 - Results are propagated between CLBs
 - Flexibility is limited in high-capacity XC4000X series to improve speed
 - Allows high-speed address calculation, high-speed addition for DSP, etc.

RAM

Xilinx XC4000 I/O Block

- LUTs can be treated as RAM cells
- Single-port operation
 - Configure as either one 16x2 or 32x1 bit array (both LUTs), two 16x1 bit arrays (both LUTs), or one 16x1 bit array (one LUT; use the other as logic)
 - Each has a common read / write port
 - Synchronous (edge-triggered) operation
 - Asynchronous (level-triggered) operation
- Dual-port operation
 - Configure as one 16x1 bit array, using both LUTs
 - One write port, two read ports
 Supports simultaneous read and write
 - operations to same or different addresses
 - Synchronous (edge-triggered) operation

Spring 2002, Lecture 22

10

Figure from Xilinx technical literature

- Three kinds of interconnect:
 - Row and column routing
 - IOB routing, which forms a ring around the outside of the CLB array
 - Dedicated networks, primarily intended for clocks, but usable for other signals

Figure from Xilinx technical literature

- Two I/O Blocks (IOBs) are at the end of each row and column
 - Each IOB contains an input register / latch and an output register / latch
 - Two inputs (to chip): direct & register
 - The associated I/O pin can be used as either an input, output, or bidirectional pin

Spring 2002, Lecture 22

Xilinx XC4000 Routing (cont.)

- CLB inputs and outputs connect to channels on all four sides, to provide maximum routing flexibility
- Switch matrix connects rows and columns
 - Six transistors per switch point
- CLBs connect to lines of various lengths:
 - Single-length lines enter a switch matrix every row / column
 - Double-length lines enter a switch matrix every two rows / columns
 - Longlines for high fanout, time-critical nets, or nets that need to be distributed over much of the chip
 - XC4000X only:
 - Quad- and octal-length lines
 - Direct connections between adjacent CLBs

12

9

Xilinx FPGAs

- XCS00/XL (Spartan)
 - High volume ASIC replacement
 - 5v, 3v, 2,000-40,000 typical gates
- XC2S00 (Spartan-II)
 - High volume ASIC/ASSP replacement
 - 2.5v, 6,000-150,000 typical gates
- XC4000XLA, XC4000XL, XC4000XV
 - High density
 - 3v, 1,500–500,000 typical gates
- XCV00 (Virtex)

13

- High density / performance
- 2.5v, 34,000-1,124,000 typical gates

Spring 2002, Lecture 22