

FLEX 8000 chip contains 26-162 LABs

- Each LAB contains 8 Logic Elements (LEs), so a chip contains 208-1296 LEs, totaling 2,500-16,000 usable gates
- LABs arranged in rows and columns, connected by FastTrack Interconnect, with I/O elements (IOEs) at the edges

Altera FLEX 10K Block Diagram (Review)

■ FLEX 10K chip contains 72-1520 LABs

- Each LAB contains 8 Logic Elements (LEs), so a chip contains 576-12,160 LEs, totaling 10,000-250,000 usable gates
- Each chip also contains 3-20 Embedded Array Blocks (EABs), which can provide 6,164-40,960 bits of RAM

Altera APEX 20K Overview

APEX 20K chip contains:

- 256-3,456 LABs, each of which contains 10 Logic Elements (LEs), so a chip contains 2,560-51,840 Les, 162,000-2,391,552 usable gates
- 16-216 Embedded System Blocks (EABs), each of which can provide 32,768-442,368 bits of memory
- Can implement CAM, RAM, dual-port RAM, ROM, and FIFO

Organization:

- MultiCore architecture, combining LUT, product-terms, \& memory in one structure
- Designed for "system on a chip"
- MegaLAB structures,each of which contains 16 LABs, one ESB, and a MegaLAB interconnect (for routing within the MegaLAB)
- ESB provides product terms or memory

APEX LABs and Interconnect

- Logic Array Block (LAB)
- 10 LEs
- Interleaved local interconnect (each LE connects to 2 local interconnect, each local interconnect connects to 10 LEs)
- Each LE can connect to 29 other Les through local interconnect

- Logic Element (LE)

- 4-input LUT, carry chain, cascade chain, same as FLEX devices
- Synchronous and asynchronous load and clear logic

- Interconnect

- MegaLAB interconnect between 16 LABs, etc. inside each MegaLAB
- FastTrack row and column interconnect between MegaLABs

APEX Embedded System Blocks

 (ESBs)Each ESB can act as a macrocell and provide product terms

- Each ESB gets 32 inputs from local interconnect, from adjacent LAB or MegaLAB interconnect
- In this mode, each ESB contains 16 macrocells, and each macrocell contains 2 product terms and a programmable register (parallel expanders also provided)

Each ESB can also act as a memory block (dual-port RAM, ROM, FIFO, or CAM memory) configured in various sizes

- Inputs from adjacent local interconnect, which can be driven from MegaLAB or FastTrack interconnect
- Outputs to MegaLAB and FastTrack, some outputs to local interconnect

Xilinx XC4000 CLB Carry Logic

- Fast carry logic provides carry and borrow signals
- Not shown on previous slide, this computation occurs between CLB inputs and F \& G LUTs
- Results are propagated between CLBs
- Flexibility is limited in high-capacity XC4000X series to improve speed
- Allows high-speed address calculation, high-speed addition for DSP, etc.

RAM

■ LUTs can be treated as RAM cells

Single-port operation

- Configure as either one 16×2 or 32×1 bit array (both LUTs), two 16×1 bit arrays (both LUTs), or one 16×1 bit array (one LUT; use the other as logic)
- Each has a common read / write port
- Synchronous (edge-triggered) operation
- Asynchronous (level-triggered) operation

Dual-port operation

- Configure as one 16×1 bit array, using both LUTs
- One write port, two read ports
- Supports simultaneous read and write operations to same or different addresses
- Synchronous (edge-triggered) operation

Xilinx XC4000 Routing

Figure from Xilinx technical literature
Three kinds of interconnect:

- Row and column routing
- IOB routing, which forms a ring around the outside of the CLB array
- Dedicated networks, primarily intended for clocks, but usable for other signals

Xilinx XC4000 I/O Block

Figure from Xilinx technical literature

- Two I/O Blocks (IOBs) are at the end of each row and column
- Each IOB contains an input register / latch and an output register / latch
- Two inputs (to chip): direct \& register
- The associated I/O pin can be used as either an input, output, or bidirectional pin

Xilinx XC4000 Routing (cont.)

- CLB inputs and outputs connect to channels on all four sides, to provide maximum routing flexibility
- Switch matrix connects rows and columns
- Six transistors per switch point

- CLBs connect to lines of various lengths:
- Single-length lines - enter a switch matrix every row / column
- Double-length lines - enter a switch matrix every two rows / columns
- Longlines - for high fanout, time-critical nets, or nets that need to be distributed over much of the chip
- XC4000X only:
- Quad- and octal-length lines
- Direct connections between adjacent CLBs

Xilinx FPGAs

■ XCS00/XL (Spartan)

- High volume ASIC replacement
- $5 \mathrm{v}, 3 \mathrm{v}, 2,000-40,000$ typical gates

■ XC2S00 (Spartan-II)

- High volume ASIC/ASSP replacement
- 2.5v, 6,000-150,000 typical gates
- XC4000XLA, XC4000XL, XC4000XV
- High density
- 3v, 1,500-500,000 typical gates

■ XCV00 (Virtex)

- High density / performance
- 2.5v, 34,000-1,124,000 typical gates

