
 Name: _____________________________

 1

CS 4/55111 Final Exam VLSI Design

 Monday 8 May 2006

1. VHDL divides the description of a module into an Entity and an Architecture section.

a. What is the purpose of each of these two sections? (10 points)

 The Entity section specifies the name of the entity as well as the names and types of its
input and output ports.

 The Architecture section specifies the name of this architecture for a specific entity and
then contains either a structural or behavioral description of the entity.

 Essentially, the Entity section specifies the interface to the entity and the Architecture
section specifies the functionality or composition of the entity.

a. Would it ever make sense to have multiple alternative Architecture sections for a
single Entity section? Explain. (5 points)

 Yes. A behavioral description might specify the functionality of the entity for simulation
purposes, whereas a structural description might specify the composition of the entity in
terms of lower-level components for documentation purposes. Or alternative behavioral
descriptions might be written to explore tradeoffs between functionality and chip area.

2. What is a STD_LOGIC type? (10 points)

 VHDL uses the STD_LOGIC type to model represent logic values. It includes not only
values of 0 and 1, but also Z, U, X, –, L, W, and H which are needed for some designs.

3. Are statements in VHDL concurrent (like in AHDL) or sequential (like in C or Java)?
Explain. (10 points)

 VHDL statements are generally concurrent, with the exception of statements inside a process,
which are executed sequentially.

 Name: _____________________________

 2

4. Consider the following two VHDL code fragments:

PROCESS PROCESS (Reset, Clock)
BEGIN BEGIN
 WAIT UNTIL (Clock’EVENT AND Clock=’1’); IF reset=’1’ THEN
 IF reset=’1’ THEN Q3 <= ‘0’;
 Q2 <= ‘0’; ELSEIF (Clock’EVENT AND Clock=’1’) THEN
 ELSE Q3 <= D;
 Q2 <= D; END IF;
 END IF; END PROCESS;
END PROCESS;

How do these two code fragments differ? Be specific. (15 points)

 In the leftmost process, the process begins and then waits for a rising clock edge (“WAIT
UNTIL…). At the rising clock edge, it checks first for an active reset signal, and if it finds
ones it stores 0 and sends that 0 through to output Q2. If reset is low it stores D and sends
that D value through to output Q2. Thus it specifies a rising-edge triggered D flip-flop with
synchronous reset.

 In the rightmost process, the process is “sensitive” to Reset and Clock, meaning that a change
on one of those signals activates the process. If Reset activated the process, it stores 0 and
sends that 0 through to output Q3. If a clock event activated the process and that event was a
rising clock edge, it stores D and sends that D value through to output Q3. Thus it specifies a
rising-edge triggered D flip-flop with asynchronous reset.

5. It is easy to write code in VHDL that is syntactically correct, but that will not generate
the expected hardware once it is compiled onto an FPGA. Explain, preferably with an
example or two. (10 points)

 Some statements in VHDL, such as ASSERT statements or file operations, may be useful for
simulation but are not synthesizable. Other statements have to be used in the proper way to
get the expected results — for example, values must be assigned to all outputs in each path
through an IF or CASE statement, else a (probably unwanted) latch will be added. Or a
value written in one state of a state machine can not be read until the next state.

6. Compare the relative sizes of the programming points in field-programmable logic
device that use antifuse, EEPROM, and SRAM programming technologies. (10 points)

 An antifuse programming point is the size of a via, which is smaller than a transistor. An
EEPROM programming point is slightly larger than a transistor. An SRAM programming
point is the size of 4-6 transistors.

 Name: _____________________________

 3

7. How does the local interconnect and sharing of functionality between the macrocells
inside an Altera MAX LAB compare to that between the LEs within an Altera FLEX
LAB? (20 points)

 In the MAX LABs, the macrocells can use sharable expanders to broadcast values to other
macrocells inside the LAB, and can use parallel expanders to borrow product terms from
adjacent macrocells to provide more inputs to their OR gates.

 In the FLEX LABs, the LEs use the local interconnect to send values from the outputs of LEs
to the inputs of LEs within the LAB, and use the LE’s cascade and carry chains to combine
LEs in a LAB into multiple-bit arithmetic and wider logical functions, respectively.

 So both MAX and FLEX provide local broadcast of values and combining cells for wider
logical functions, but only FLEX provides cascade mode for multiple-bit arithmetic.

 (As a matter of strategic test-taking, note that this was a 20-point question, yet some people
wrote answers here that were much shorter those they wrote for the 10-point questions!)

8. Consider the FLEX 8000 I/O
element shown to the right.
What functionality is provided by
the multiplexor on the right side
of the figure (shown shaded
with a thick border)? Be
specific. (10 points).

That multiplexor sends its output
to a tri-state device that in turn
connects to an I/O pin, so if the
tri-state device is activated it sends
the output of the multiplexor to a
pin that acts as an output pin.

The multiplexor’s lower input
comes from a register that holds a
value received from the row/column
or from the pin acting as an input pin.

The multiplexor’s upper input comes directly from the row/column, bypassing the register.

In summary, the multiplexor chooses either the data coming directly from the row/column or
the data from the register, and passes that data on to the tri-state device and the output pin.

