Design Entry

- Computer Aided Design (CAD) tools typically support both graphical schematic capture as well as textual design entry (e.g., AHDL, VHDL)
 - Documentation, design, simulation, verification
- A circuit schematic shows the interconnection of structural elements that make up a circuit
 - Captures only interconnection; behavior specified separately
 - The electronic (usually ASCII) version of that schematic is called a *netlist*
- Schematic capture
 - Direct entry of the circuit schematic
 - More "bookkeeping" than "automation"

Spring 2006, Lecture 06

Graphic Editor

Figure from Altera technical literature

2

- Enter cells from various predefined component libraries, or user-defined cells
- Connect cells using nets, buses, or name
- "Smart" selection tool automatically becomes proper tool for task at hand

Schematic Entry

- Circuit schematics are drawn on schematic sheets, which come in standard sizes (8.5x11, 11x17, etc.)
 - Each sheet includes a labeled border, and a block listing the circuit name, designer's name, date, etc.
 - There are standards for most of the commonly-used symbols
- Terms used in circuit schematics:

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997 Spring 2006, Lecture 06

Cell Library

- Components (sometimes called modules) in a schematic are chosen from a library of cells
 - ASIC vendors provide a library of primitive gates for schematic entry
 - Users can define their own components and symbols
- Problem no standard exists
 - Individual vendors might use different names to refer to a 2-input or gate
 - May be TTL 7400-series names:
 - 2-input NAND = 7400
 - 2-input AND = 7408
 - 2-input OR = 7432
 - May be more descriptive:
 nand2, xor3, ...
 - Behavior may vary
 - Which input does 2-input multiplexor select when select input S = 0?

Spring 2006, Lecture 06

Names & Symbols

- Each cell is represented by a picture, or icon, called a symbol
 - Primitive cells (e.g., AND gates) have standardized non-rectangular symbols
 - Subschematics are represented by special custom icons
- Each cell, whether a primitive cell or a subschematic, has a name
 - Each use of a cell in a schematic is a different *instance* of that cell, and is given a unique *instance name*

Nets

- Cell instances have *terminals*, also known as pins, connectors, or signals, that are the inputs and outputs of the cell
- Cell instances are connected by wire segments, commonly called nets
 - A local (internal) net is internal to a cell
 - An *external* net connects to the inputs and / or outputs of the cell
- Nets may sometimes be collected together into *buses* for convenience
 - May be represented by a thicker line on the schematic, with some indication of number of nets involved
 - Individual nets can still be accessed when necessary

Spring 2006, Lecture 06

The "Chiptrip" Tutorial Example

Figure from Altera technical literature

- Simulates an auto driving around town
 - auto_max AHDL state machine that keeps track of location of auto and acceleration at that point in time, gives ticket if you accelerate on small roads
 - speed ch waveform state machine that gives ticket if you accelerate for a second time
 - tick cnt counter that counts tickets
 - time cnt AHDL counter that keeps track of time taken to reach Altera

Graphic Editor

Figure from Altera technical literature

10

- Enter cells from various predefined component libraries, or user-defined cells
- Connect cells using nets, buses, or name
- "Smart" selection tool automatically becomes proper tool for task at hand

Waveform Editor (for Design Entry) Reference field Low (0) logic level High (1) logic level 28 1 h B Time field Node handle shows the I/O INPUT INPUT type of the node. Name field Type field show. the logic that drives the node. Appears in WDF only. Value I XC XC The progress bar indicates percent completion during processing. Reference Figure from Altera technical literature Figuref from Altera technical literature Can contain logical and state machine inputs; combinational, registered, and state machine outputs; and "buried" nodes to help define desired outputs • Can specify state names for state machines Can compare desired and actual outputs Spring 2006, Lecture 06

Compiler

- Checks for design entry errors, builds a single large flat database
- Logic synthesis to minimize resource usage (see Assign/Global Project Logic Synthesis), partitioner and fitter to match to available devices

Spring 2006, Lecture 06

