Flip flops v. latches
*Flip flops are edge triggered
*Latches are level sensitive

Many variants
*S-R, J-K, D, T latch/flip-flop
*D-type most useful in processor design

Beware of race conditions
*Need edge triggered device in any feed-back path

State machines design

Interesting state machines have inputs and outputs.

State will change depending on input.

Two classes are Mealy and Moore:
*Moore machine: output = f(state)

Input bb bb Qltput
[P lﬁf

Mealy machine: output = f(state,input)

Input

Generally: Moore machines have more states (mnemonic), but are easier to
understand.

Design Process

General Procedure
Step 1: Create a State Diagram
+Step 2: Write down a State Transition Table
+Step 3: Figure out the inputs to the flip flops using the excitation
table.
+Step 4: Figure out functions for input to flip flops
Step 5: Implement the machine

Example

*"Write a string recognizer that recognizes the pattern 010 in its input.
*When an input bit pattern is recognized, output a 1.

*When the sequence 100 is seen, output zeros thereafter until a reset is
asserted”

*Examples:

X:001010100010
Z:000101010000

X:0110110100100
Z: 0000000010000

NN EUE N e B EOE N e

1. State diagram creation

Start with easy paths, fill in the rest, reuse as much as possible!
This is a Moore machine:

A BN e
=)




2. Final state diagram

3. Symbolic State Transition Table:

State Current Next Next
Number State (X=0) (X=1)

Output

SO

S1

S2

S3

S4

S5

S6

i
i

4. Figure out flip flop inputs

A B C

e e e = e e e e e e i i
e === =N I = S SN
—_—_ 0 O~ H OO =, OO =0 OoN
—_ O = O OO = O = OO —=O H#

i
i

5. Reduce using K-maps

B

B AB
CX 00 01 11 10 CX\00 01 11 10 CX 00 01 11 10




—_—_—_—_o oo o P

6. Output Logic
tput

Ou
0
0
0
0
0
0
1

_—— O O == O O w

C
0
1
0
1
0
1
0
1

X

Karnaugh map

6. Final Circuit

Q

O[]0

o oflo

BN EOE N el B

State minimization

Goal: to minimize the number of states in a state diagram.
*Basic idea: Identify and combine states with equivalent behavior.
+2 states are equivalent if the output is the same and, for each input
combinations, the next state is the same state or an equivalent state.

Approach:
«Start with state transition table.
+Identify states with the same behavior
*If such states go to the same next state, combine them and rename
each occurrence of the old state in the state table.
*Repeat with new state table until no new combinations are possible.

Next Time : Minimization

ate Transition Table

refix Name X=0 X=I Output (X=0) Output (X=1)

eset SO
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14

S1
S3
S5
S7
S9
S11
S13
N
N
SO
N
N
N
SO
N

S2
S4
S6
S8
S10
S12
S14
N
N
SO
SO
N
N
SO
SO

OO~ O = OO DDDODODOoOOOO

SO oo CcCoococococoocoCeo




dified State Transition Table
dified State Transition Table (2nd iteration)
Prefix Name X=0 X=1 Output Output Prefix Name X=0 X-1 Output Output
(X=0) X=1) (X=0) (X=1)
Reset S0 Sl s2 0 0
et SO S1 S2 0
0 sl 83 sS4 0 0
1 S2 S5 S6 0 0 S1 S3 S4 0
00 S3 S7 ST 0 0 S2 sS4 S3° 0
01 S4 s7 S10° 0 0 11 g3’ g7’ g7’ 0
10 S5 S7 S10° 0 0 10 sS4’ g7’ S10° 0
1 S6 7 7 0 0 5

0
0
0
0
0
00x, S7’ S0 S0 0 0 ) S7 SO SO 0
010
100 100
- 11x
011 S10° S0 S0 1 0 310’ 30 30 . 5
l ]
mary
ponents

*Flip flops (edge triggered)
Latches (usually level triggered).

igning Sequential Circuits

*Step 1: Create a State Diagram

*Step 2: Write down a State Transition Table

*Step 3: Do state minimization

*Step 4: Do state assignment

Step 5: Figure out the inputs to the flip flops using the excitation table.
Step 6: Figure out functions for input to flip flops

te Diagram:
Reset
1/0 :‘
\\ a
Fy
0/0 .

1




