
VHDL Introduction,

Part I

Dr. Robert A. Walker

Computer Science Department

Kent State University

Kent, OH 44242 USA

http://www.cs.kent.edu/~walker

Figures in this lecture are from:

Rapid Prototyping of Digital Systems,

Second Edition

James O. Hamblen & Michael D. Furman,

Kluwer Academic Publishers, 2001,

ISBN 0-7923-7439-8

Spring 2006, Lecture 182

Robert A. Walker

VHDL History

! VHDL = VHSIC Hardware Description Language

" VHSIC = Very High Speed Integrated Circuits

" Both US Department of Defense (DOD) programs

! Initially developed under DOD auspices, later

standardized as IEEE standards 1076-1987, 1076-

1993, & 1076-1164 (standard logic data type)

! Syntax similar to ADA and Pascal

! A concurrent language, initially aimed at simulation,

later at synthesis

" Specific subsets and “cookbook” design styles

supported by logic and behavioral synthesis tools

" Write code like this & you’ll get this expected design…

Spring 2006, Lecture 183

Robert A. Walker

Signals, Time, and Simulation

! Variables vs. signals

" VHDL variables change value without delay

" VHDL signals have an associated delay

! A signal is given a value at a specific point in time,

and retains that value until it is given a new value

" A waveform is a sequence of values over time

" Example: in1 <= ‘0’, ‘1’ after 5 ns, ‘0’ after 15 ns;

" A variable has a single value, whereas a signal has

multiple value / time pairs

! A discrete event simulator executes VHDL code by

advancing time to the next event, updating signal

values, then possibly scheduling new events

Spring 2006, Lecture 184

Robert A. Walker

Simple Gate Network (Desired Hardware)

A

B

C

D(1)

D(2)

Y

A

B

C

D(1)

D(2)

X

Spring 2006, Lecture 185

Robert A. Walker

Simple Gate Network (VHDL Code)

LIBRARY IEEE; -- Include Libraries for standard logic data types

USE IEEE.STD_LOGIC_1164.ALL;

-- Entity name normally the same as file name

ENTITY gate_network IS -- Ports: Declares module inputs and outputs

PORT(A, B, C : IN STD_LOGIC;

-- Standard Logic Vector (Array of 4 Bits)

 D : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

-- Output Signals

 X, Y : OUT STD_LOGIC);

END gate_network;

-- Defines internal module architecture

ARCHITECTURE behavior OF gate_network IS

BEGIN -- Concurrent assignment statements operate in parallel

-- D(1) selects bit 1 of standard logic vector D

X <= A AND NOT(B OR C) AND (D(1) XOR D(2));

-- Process must declare a sensitivity list,

-- In this case it is (A, B, C, D)

-- List includes all signals that can change the outputs

 PROCESS (A, B, C, D)

BEGIN -- Statements inside process execute sequentially

Y <= A AND NOT(B OR C) AND (D(1) XOR D(2));

 END PROCESS;

END behavior;

Spring 2006, Lecture 186

Robert A. Walker

VHDL Design Styles

! VHDL was designed to support both behavioral and

structural designs as various levels of abstraction

" Behavioral description says what the design does,

but not how it is implemented

" Structural description specifies the interconnection of

a set of components, but not what the components do

" The design process tends to convert high-level

behavioral descriptions to low-level structural ones

! VHDL design entities include

" Entity declaration — interface (named I/O ports)

" Architecture declaration — behavioral or structural

description of the design entity

Spring 2006, Lecture 187

Robert A. Walker

Simple Gate Network (Entity)

LIBRARY IEEE; -- Include Libraries for standard logic data types

USE IEEE.STD_LOGIC_1164.ALL;

-- Entity name normally the same as file name

ENTITY gate_network IS -- Ports: Declares module inputs and outputs

PORT(A, B, C : IN STD_LOGIC;

-- Standard Logic Vector (Array of 4 Bits)

 D : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

-- Output Signals

 X, Y : OUT STD_LOGIC);

END gate_network;

A

B

C

D(1)

D(2)

Y

A

B

C

D(1)

D(2)

X

Spring 2006, Lecture 188

Robert A. Walker

Simple Gate Network (Architecture)

-- Defines internal module architecture

ARCHITECTURE behavior OF gate_network IS

BEGIN -- Concurrent assignment statements operate in parallel

-- D(1) selects bit 1 of standard logic vector D

X <= A AND NOT(B OR C) AND (D(1) XOR D(2));

-- Process must declare a sensitivity list,

-- In this case it is (A, B, C, D)

-- List includes all signals that can change the outputs

 PROCESS (A, B, C, D)

BEGIN -- Statements inside process execute sequentially

Y <= A AND NOT(B OR C) AND (D(1) XOR D(2));

 END PROCESS;

END behavior;

A

B

C

D(1)

D(2)

Y

A

B

C

D(1)

D(2)

X

Spring 2006, Lecture 189

Robert A. Walker

VHDL Data Types

! Boolean, integer, real

! STD_LOGIC to model logic values

" 0, 1, Z, U, X, –, L, W, H

" Z = tri-state, U = uninitialized, X = unknown, – = don’t

care, L = weak “0”, W = weak unknown, H = weak “1”
Table 6.2 STD_LOGIC conversion functions.

 Function Example:

TO_STDLOGICVECTOR(bit_vector) TO_STDLOGICVECTOR(X"FFFF")

Converts a bit vector to a standard logic

vector.

Generates a 16-bit standard logic vector

of ones. "X" indicates hexadecimal and

"B" is binary.

CONV_STD_LOGIC_VECTOR(integer, bits) CONV_STD_LOGIC_VECTOR(7, 4)

Converts an integer to a standard logic

vector.

Produces a standard logic vector of

"0111".

CONV_INTEGER(std_logic_vector) CONV_INTEGER("0111")

Converts a standard logic vector to an

integer.

Produces an integer value of 7.

Spring 2006, Lecture 1810

Robert A. WalkerVHDL

Operations

Table 6.1 VHDL Operators.

VHDL Operator Operation

+ Addition

- Subtraction

* Multiplication*

/ Division*

MOD Modulus*

REM Remainder*

& Concatenation ﾐ used to combine bits

SLL** logical shift left

SRL** logical shift right

SLA** arithmetic shift left

SRA** arithmetic shift right

ROL** rotate left

ROR** rotate right

= equality

/= Inequality

< less than

<= less that or equal

> greater than

>= greater than or equal

NOT logical NOT

AND logical AND

OR logical OR

NAND logical NAND

NOR logical NOR

XOR logical XOR

XNOR* logical XNOR

*Not supported in many VHDL synthesis tools. In the MAX+PLUS II tools,

only multiply and divide by powers of two (shifts) are supported. Mod and

Rem are not supported in MAX+PLUS II. Efficient design of multiply or

divide hardware typically requires the user to specify the arithmetic

algorithm and design in VHDL.

** Supported only in 1076-1993 VHDL.

Note:

VHDL is

not case

sensitive

Precedence:

**,ABS,NOT

*,/,MOD,REM

+,– (sign)

+,–,&

SLL,SRL,SLA,…

=,/=,<,<=,>,>=

AND,NOT,OR,

 NOT,XOR,

 XNOR

 (note: all at

 same level)

Spring 2006, Lecture 1811

Robert A. Walker

Concurrent and Sequential Statements

! Concurrent statements

" Signal assignment

" Conditional signal assignment (WHEN-ELSE)

" Selected signal assignment (WITH-SELECT-WHEN)

" Process

! Statements inside a process are executed sequentially

" Variables, arrays, queues

" Variable assignments (no delay)

" IF-THEN-ELSE,CASE-WHEN, LOOP

" WAIT UNTIL, WAIT FOR, WAIT ON

" WARNING — not everything you do in a process

may be synthesizable by your synthesis tools!

Spring 2006, Lecture 1812

Robert A. WalkerFour

Multiplexers

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY multiplexer IS -- Input Signals and Mux Control

 PORT(A, B, Mux_Control : IN STD_LOGIC;

 Mux_Out1, Mux_Out2,

 Mux_Out3, Mux_Out4 : OUT STD_LOGIC);

END multiplexer;

ARCHITECTURE behavior OF multiplexer IS

BEGIN -- selected signal assignment statementﾉ

 Mux_Out1 <= A WHEN Mux_Control = '0' ELSE B;

 -- ﾉ with Select Statement

 WITH mux_control SELECT

 Mux_Out2 <= A WHEN '0',

 B WHEN '1',

 A WHEN OTHERS; -- OTHERS case required since STD_LOGIC

 -- has values other than "0" or "1"

 PROCESS (A, B, Mux_Contro l)

 BEGIN -- Statements inside a process

 IF Mux_Control = '0' THEN -- execute sequentially.

 Mux_Out3 <= A;

 ELSE

 Mux_out3 <= B;

 END IF;

 CASE Mux_Control IS

 WHEN '0' =>

 Mux_Out4 <= A;

 WHEN '1' =>

 Mux_Out4 <= B;

 WHEN OTHERS =>

 Mux_Out4 <= A;

 END CASE;

 END PROCESS;

END behavior;

0

1

Mux_Contro l

Mux_Outx

A

B

Spring 2006, Lecture 1813

Robert A. Walker

Signal Assignment

! Concurrent signal assignment

" Example: a <= ‘1’; z <= a XOR b;

" LHS signal type must match RHS

! Conditional signal assignment

" Example: z <= s0 WHEN sel=‘0’ ELSE s1;

" Last ELSE should have no condition to handle all

cases not otherwise covered

! Selected signal assignment

" Example: WITH sel SELECT

z <= s0 WHEN ‘0’, s1 WHEN ‘1’;

" Cover all cases in mutually-exclusive fashion,

possibly use “WHEN OTHERS” for last case

Spring 2006, Lecture 1814

Robert A. Walker

Processes

! A process may begin “main: process (A, B)”

" Name of process is “main”

" Sensitivity list for process is “A, B”

! Sensitivity list

" If one of these signals changes, the process executes

" Should contain any signals on the right-hand-side of

an assignment, or in any boolean condition

! Conditionals in IF statements must return a boolean

" OK to write: if reset = ‘1’ then…

" NOT OK to write: if reset then…

! Returns a standard logic type (!)

Spring 2006, Lecture 1815

Robert A. Walker

Sequential Statements (Inside Process)

! IF-THEN-ELSE

" Only statements in the first condition matched will be

executed

" Nesting allowed, each level adds more multiplexing or

other additional logic, so should be done carefully

! CASE-WHEN

" Good when all branching is based on signle condition

! LOOP, WHILE-LOOP, FOR-LOOP

" Repetition

! WAIT UNTIL (boolean), WAIT FOR (time expression),

WAIT ON (signal) -- waits for event on that signal

