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VHDL History

! VHDL = VHSIC Hardware Description Language

" VHSIC = Very High Speed Integrated Circuits

" Both US Department of Defense (DOD) programs

! Initially developed under DOD auspices, later

standardized as IEEE standards 1076-1987, 1076-

1993, & 1076-1164 (standard logic data type)

! Syntax similar to ADA and Pascal

! A concurrent language, initially aimed at simulation,

later at synthesis

" Specific subsets and “cookbook” design styles

supported by logic and behavioral synthesis tools

" Write code like this & you’ll get this expected design…
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Signals, Time, and Simulation

! Variables vs. signals

" VHDL variables change value without delay

" VHDL signals have an associated delay

! A signal is given a value at a specific point in time,

and retains that value until it is given a new value

" A waveform is a sequence of values over time

" Example:  in1 <= ‘0’, ‘1’ after 5 ns, ‘0’ after 15 ns;

" A variable has a single value, whereas a signal has

multiple value / time pairs

! A discrete event simulator executes VHDL code by

advancing time to the next event, updating signal

values, then possibly scheduling new events
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Simple Gate Network (Desired Hardware)
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Simple Gate Network (VHDL Code)

LIBRARY IEEE; -- Include Libraries for standard logic data types

USE  IEEE.STD_LOGIC_1164.ALL;

-- Entity name normally the same as file name

ENTITY gate_network IS -- Ports: Declares module inputs and outputs

PORT(A, B, C : IN STD_LOGIC;

-- Standard Logic Vector ( Array of 4 Bits )

  D : IN STD_LOGIC_VECTOR( 3 DOWNTO 0 );

-- Output Signals

   X, Y : OUT STD_LOGIC );

END gate_network;        

 

-- Defines internal module architecture

ARCHITECTURE behavior OF gate_network IS

BEGIN -- Concurrent assignment statements operate in parallel

-- D(1) selects bit 1 of standard logic vector D

X <= A AND NOT( B OR C ) AND ( D( 1 ) XOR D( 2 ) );

-- Process must declare a sensitivity list,

-- In this case it is  ( A, B, C, D )

-- List includes all signals that can change the outputs

     PROCESS ( A, B, C, D )

BEGIN -- Statements inside process execute sequentially

Y <= A AND NOT( B OR C) AND ( D( 1) XOR D( 2 ) );

     END PROCESS;

END behavior;
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VHDL Design Styles

! VHDL was designed to support both behavioral and

structural designs as various levels of abstraction

" Behavioral description says what the design does,

but not how it is implemented

" Structural description specifies the interconnection of

a set of components, but not what the components do

" The design process tends to convert high-level

behavioral descriptions to low-level structural ones

! VHDL design entities include

" Entity declaration — interface (named I/O ports)

" Architecture declaration — behavioral or structural

description of the design entity
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Simple Gate Network (Entity)

LIBRARY IEEE; -- Include Libraries for standard logic data types

USE  IEEE.STD_LOGIC_1164.ALL;

-- Entity name normally the same as file name

ENTITY gate_network IS -- Ports: Declares module inputs and outputs

PORT(A, B, C : IN STD_LOGIC;

-- Standard Logic Vector ( Array of 4 Bits )

  D : IN STD_LOGIC_VECTOR( 3 DOWNTO 0 );

-- Output Signals

   X, Y : OUT STD_LOGIC );

END gate_network;        
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Simple Gate Network (Architecture)

-- Defines internal module architecture

ARCHITECTURE behavior OF gate_network IS

BEGIN -- Concurrent assignment statements operate in parallel

-- D(1) selects bit 1 of standard logic vector D

X <= A AND NOT( B OR C ) AND ( D( 1 ) XOR D( 2 ) );

-- Process must declare a sensitivity list,

-- In this case it is  ( A, B, C, D )

-- List includes all signals that can change the outputs

     PROCESS ( A, B, C, D )

BEGIN -- Statements inside process execute sequentially

Y <= A AND NOT( B OR C) AND ( D( 1) XOR D( 2 ) );

     END PROCESS;

END behavior;
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VHDL Data Types

! Boolean, integer, real

! STD_LOGIC to model logic values

" 0, 1, Z, U, X, –, L, W, H

" Z = tri-state, U = uninitialized, X = unknown, – = don’t

care, L = weak “0”, W = weak unknown, H = weak “1”
Table 6.2  STD_LOGIC conversion functions. 

  Function   Example: 

TO_STDLOGICVECTOR( bit_vector )   TO_STDLOGICVECTOR( X"FFFF" ) 

Converts a bit vector to a standard logic 

vector. 

Generates a 16-bit standard logic vector 

of ones. "X" indicates hexadecimal and 

"B" is binary. 

CONV_STD_LOGIC_VECTOR( integer, bits ) CONV_STD_LOGIC_VECTOR( 7, 4 ) 

Converts an integer to a standard logic 

vector. 

Produces a standard logic vector of  

"0111". 

CONV_INTEGER( std_logic_vector ) CONV_INTEGER( "0111" ) 

Converts a standard logic vector to an 

integer. 

Produces an integer value of 7. 
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Operations

Table 6.1 VHDL Operators. 

VHDL Operator Operation 

+ Addition 

- Subtraction 

* Multiplication* 

/ Division* 

MOD  Modulus* 

REM  Remainder* 

& Concatenation ﾐ used to combine bits 

SLL** logical shift left 

SRL** logical shift right 

SLA** arithmetic shift left 

SRA** arithmetic shift right 

ROL** rotate left 

ROR** rotate right 

= equality 

/= Inequality 

< less than 

<= less that or equal 

> greater than 

>= greater than or equal 

NOT logical NOT 

AND logical AND 

OR logical OR 

NAND logical NAND 

NOR logical NOR 

XOR logical XOR 

XNOR* logical XNOR 

*Not supported in many VHDL synthesis tools. In the MAX+PLUS II tools, 

only multiply and divide by powers of two (shifts) are supported. Mod and 

Rem are not supported in MAX+PLUS II. Efficient design of multiply or 

divide hardware typically requires the user to specify the arithmetic 

algorithm and design in VHDL.  

** Supported only in 1076-1993 VHDL. 

Note:

VHDL is

not case

sensitive

Precedence:

**,ABS,NOT

*,/,MOD,REM

+,– (sign)

+,–,&

SLL,SRL,SLA,…

=,/=,<,<=,>,>=

AND,NOT,OR,

  NOT,XOR,

  XNOR

  (note: all at

  same level)
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Concurrent and Sequential Statements

! Concurrent statements

" Signal assignment

" Conditional signal assignment (WHEN-ELSE)

" Selected signal assignment (WITH-SELECT-WHEN)

" Process

! Statements inside a process are executed sequentially

" Variables, arrays, queues

" Variable assignments (no delay)

" IF-THEN-ELSE,CASE-WHEN, LOOP

" WAIT UNTIL, WAIT FOR, WAIT ON

" WARNING — not everything you do in a process

may be synthesizable by your synthesis tools!
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Multiplexers

LIBRARY IEEE; 

USE  IEEE.STD_LOGIC_1164.ALL; 

 

ENTITY multiplexer IS    -- Input Signals and Mux Control 

 PORT( A, B, Mux_Control  : IN  STD_LOGIC; 

  Mux_Out1, Mux_Out2,  

  Mux_Out3, Mux_Out4  : OUT  STD_LOGIC  ); 

END multiplexer; 

 

ARCHITECTURE behavior OF multiplexer IS 

BEGIN      -- selected signal assignment statementﾉ  

 

 Mux_Out1 <= A WHEN Mux_Control = '0' ELSE B; 

      -- ﾉ  with Select Statement 

 WITH mux_control SELECT 

 

 Mux_Out2 <=  A WHEN     '0', 

   B WHEN     '1', 

   A WHEN OTHERS;  -- OTHERS case required since STD_LOGIC 

      --      has values other than "0" or "1" 

 PROCESS ( A, B, Mux_Contro l) 

 BEGIN     -- Statements inside a process  

  IF Mux_Control = '0' THEN  --      execute sequentially. 

      Mux_Out3 <= A;  

  ELSE  

      Mux_out3 <= B;  

  END IF; 

 

  CASE Mux_Control IS 

   WHEN '0' => 

        Mux_Out4 <= A; 

   WHEN '1' => 

    Mux_Out4 <= B; 

   WHEN OTHERS => 

    Mux_Out4 <= A; 

  END CASE; 

 END PROCESS; 

END behavior; 
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Signal Assignment

! Concurrent signal assignment

" Example: a <= ‘1’;       z <= a XOR b;

" LHS signal type must match RHS

! Conditional signal assignment

" Example: z <= s0 WHEN sel=‘0’ ELSE s1;

" Last ELSE should have no condition to handle all

cases not otherwise covered

! Selected signal assignment

" Example: WITH sel SELECT

z <= s0 WHEN ‘0’, s1 WHEN ‘1’;

" Cover all cases in mutually-exclusive fashion,

possibly use “WHEN OTHERS” for last case
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Processes

! A process may begin “main: process (A, B)”

" Name of process is “main”

" Sensitivity list for process is “A, B”

! Sensitivity list

" If one of these signals changes, the process executes

" Should contain any signals on the right-hand-side of

an assignment, or in any boolean condition

! Conditionals in IF statements must return a boolean

" OK to write: if reset = ‘1’ then…

" NOT OK to write: if reset then…

! Returns a standard logic type (!)
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Sequential Statements (Inside Process)

! IF-THEN-ELSE

" Only statements in the first condition matched will be

executed

" Nesting allowed, each level adds more multiplexing or

other additional logic, so should be done carefully

! CASE-WHEN

" Good when all branching is based on signle condition

! LOOP, WHILE-LOOP, FOR-LOOP

" Repetition

! WAIT UNTIL (boolean), WAIT FOR (time expression),

WAIT ON (signal) -- waits for event on that signal


