
2 Spring 2006, Lecture 21

PLAs

! A PLA (programmable logic array)

replicates a 2-level and-or structure

many times in a programmable array

! Parts of a CPU!s datapath or next-state
logic can be built out of PLAs

! Small circuits can be built out of PLAs

! At the input of each gate, there's a “fuse”

which can be left whole, or broken

! The designer can control which inputs go
to each and gate, and which outputs of
the and gates go to each or gate

! A PLA can be either

! Mask programmable — customer orders
a programmed PLA from manufacturer

! Field programmable — customer can
program PLA (once)

3 Spring 2006, Lecture 21

PLAs

! A PLA (programmable logic array)

replicates a 2-level and-or structure

many times in a programmable array

Diagram from Computer Systems, Maccabe, Irwin 1993

! This PLA has 2 inputs, 2 outputs, and can
represent up to 3 product terms

4 Spring 2006, Lecture 21

PLA Example

! This is an abstract diagram of a PLA with

6 inputs, 4 outputs, which can represent

up to 12 product terms

Diagram from Digital Design, Johnson & Karim, PWS-Kent 1987

! Try the Java KMap->PLA animation at
http://tech-www.informatik.uni-hamburg.de/applets/kvd

5 Spring 2006, Lecture 21

Field-Programmable Logic Device

! The next evolutionary step beyond the

PLA is the field-programmable logic
device (FPLD), also called the:

! Field-programmable gate array (FPGA)

! Complex programmable logic device
(CPLD)

! FPLD characteristics

! Based on either an array of PLA-like and-
or structures, or on look-up tables

! May include not only this combinational
logic, but also D (or more complex) flip-
flops to more easily build sequential
circuits

! Many can be “programmed” repeatedly

! Connect I/O to buses, connect buses to

cells, control cell functions

! Available in different sizes up to millions
of gates (speed/density/cost tradeoffs)

6 Spring 2006, Lecture 21

Programming Using Antifuses

! An antifuse is normally open (“off”);

when enough current (5–15mA) passes

through it it closes (“on”)

! Current melts a thin insulating dielectric
and forms a permanent silicon link

! Disadvantage — can only program once

! Programmed in a special hardware device

! An antifuse FPLD may contain 750,000

antifuses, but only about 2% of them

typically need to be programmed

! Takes about 5-10 minutes for each chip

! Advantages:

! Small — about the size of a via

! Low resistance, low capacitance = fast

7 Spring 2006, Lecture 21

Programming Using EPROMs &
EEPROMs (Floating Gates)

! EPROM programming & operation:

! To program: a high programming voltage
is applied, semi-permanently turning the
transistor off (“open”)

! To erase: the transistor is exposed to UV
light, which returns the transistor to
normal operation (“closed”)

! Can be reprogrammed many times

! EEPROMs are similar, but are erased

electrically

! Faster to erase than EPROM, and can be
done “in-circuit”

! Requires larger cell than EPROM

! Advantages

! Can be programmed repeatedly, in-circuit

! Fairly small — requires only 1 transistor

8 Spring 2006, Lecture 21

Programming Using Static RAMs
(SRAMs)

Figure from Field-Programmable Gate Array Technology, Trimberger, Kluwer, 1994

9 Spring 2006, Lecture 21

Programming Using Static RAMs
(SRAMs) (cont.)

! Disadvantages:

! Must load configuration from ROM, disk,
etc. on power-up

! Large — requires several transistors

! Advantages:

! Can be programmed repeatedly, in-circuit

! Can be programmed quickly (< 1ms)

! Part has been 100% tested at factory

! Same basic process as CMOS, so quickly
takes advantage of new fab processes

! CMOS also requires less power than

circuits requiring pull-up resistors

! As with other techniques, can be used to
connect I/O to buses, connect buses to

cells, control cell functions

! Also used to construct RAM blocks,
stacks, queues, and other memory blocks

10 Spring 2006, Lecture 21

Types of FPLDs

! Layout / routing

! Row-based: Actel

! Matrix-based: Altera, Quicklogic, Xilinx

Actel ACT 1,
ACT 2, ACT 3

Quicklogic

Crosspoint

Altera MAX
5000, 7000
(Salcic 2.1)

Xilinx EPLD

Plessy

Antifuse

EPROM

SRAMP
ro

g
ra

m
m

in
g

 M
e

th
o

d

Multiplexor
Look-Up

Table (LUT) AND-OR

Type of Base Cell

FPGAs CPLDs

Altera Flex 8000,
Flex 10K

(Salcic 2.2)

Xilinx LCA 2000,
3000, 4000
(Salcic 2.3)

12 Spring 2006, Lecture 21

Implementing a Truth Table
Using a Multiplexor

! Besides and-or structures (see 1st slide),

an alternative is to use a 16-input mux

! Any function of N inputs can be

implemented using a 2N to 1 multiplexor

a b

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

c

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

d

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

x

1

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

1 0

0 1

0 2

0 3

1 4

0 5

1 6

0 7

0 8

0 9

0 10

0 11

0 12

0 13

0 14

0 15

a b c d

out z

13 Spring 2006, Lecture 21

Implementing a Truth Table
Using a Multiplexor (cont.)

! An alternative is to “fold” the truth table,
and tie each input to either 1, 0, or the
MSB, and only use a 8-input multiplexor

! Any function of N inputs can be
implemented using a 2N–1 to 1 multiplexor

! Some FPLDs are based on multiplexors,
and attach simple gates to selector lines

a b

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

c

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

d

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

x

1

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

a' 0

0 1

0 2

0 3

a' 4

0 5

a' 6

0 7

b c d

out z

14 Spring 2006, Lecture 21

Implementing a Truth Table
Using a ROM

! Yet another alternative is to use a ROM

! Any function of N inputs can be
implemented using a 2Nx 1 bit ROM

! Some FPLDs are based on static RAMs
(SRAMS) loaded at power-up; these are
said to use look-up tables (LUTs)

a b

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

c

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

d

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

x

1

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

10

01

02

03

14

05

16

07

08

09

010

011

012

013

014

015

a b c d

data z

addr. data

16 Spring 2006, Lecture 21

Row-Based Layout

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

! Cells are arranged in rows

! Horizontal channels between rows

! Vertical channels above cells: some
short, some long

! Each channel contains a fixed number of
tracks, each track holds one wire

! Wires may be divided into fixed-length

segments within each track

! In figure above, cell inputs connect to
horizontal wires, outputs to vertical wires

17 Spring 2006, Lecture 21

Matrix-Based Layout

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

! Cells are arranged in an array (matrix)

! Horizontal and vertical channels between
cells

! Each channel contains a fixed number of
tracks, each track holds one wire

! In figure above:

! Cell inputs connect to horizontal tracks

! Box A connects cell output(s) to horizontal

tracks, and box C connects cell output(s)

to vertical tracks

! Box B acts as a switchbox between

horizontal and vertical tracks

18 Spring 2006, Lecture 21

Antifuse Routing

Figure from Field-Programmable Gate Array Technology, Trimberger, Kluwer, 1994

19 Spring 2006, Lecture 21

Antifuse Routing
(cont.)

! Fully segmented

! Switch at every cross point normally
passes signals through vertically and
horizontally, but can connect the vertical
and horizontal tracks

! Antifuse connects or disconnects the
segments of the horizontal channel

! Non-segmented

! Excessive area requirements

! 1-segment routing

! Divides the tracks into segments of
varying lengths, which allows each net to
be routed in a track of more or less the
appropriate size

! 2-segment routing

! Allows track segments to be joined

