Techniques of krnowledge-based systems are now being applied
in VLSI synthesis and design. While still experimental,
they promise more capable design aids.

Automatic Data Path Synthesis

Donald E. Thomas, Charles Y. Hitchcock III, Thaddeus J. Kowalski,
Jayanth V. Rajan, and Robert A. Walker

Carnegie-Melion University

Computer design aids for digital systems began as
programs performing the routine tasks of bookkeeping
and manipulating large sets of data under the control of a
human operator. As designs grew, reliable analysis and
optimization programs evolved to aid further in in-
tegrated circuit design. Although design synthesis was
formerly considered to be the realm of the creative
designer, automatic and computer-aided programs are
now being developed for many of the levels of IC design.
As we move into the VLSI era, the demand for more
capable system ICs requires even greater productivity at
all levels of the design process. Thus, development of
synthesis tools for the creative design process has become
an important research area.

Synthesis is the creation of a detailed design from an
abstract specification. Digital system design actually con-
sists of many synthesis steps, each adding detail. The
quality of designs produced by automatic synthesis pro-
grams are not yet adequate for production use. However,
their use as a computer aid permitting designer interac-
tion is becoming a reality,! and promises further
benefits:

* More design alternatives. Designers can specify
parts of a design and have the synthesis program fill
in details quickly, or they can change constraint
specifications so the synthesis aid specifies a dif-
ferent design.

e Correct designs. Synthesis programs make decisions
which add new detail to the design. If the added
detail correctly implements the abstract specifica-
tion, many design errors can be eliminated.

* Multilevel representations. Synthesis programs can
maintain correlations between abstract specification
and detailed design in the form of a representation
with multiple levels of abstraction. The representa-
tion supports the use of highly capable design aids
such as mixed level simulators and timing verifiers.

The research described here is the portion of the CMU-
DA system! that operates between the behavioral level
and the functional-block level of IC design as shown in
Figure 1. At the behavioral level, the abstract specifica-
tion of the system to be designed resembles a program
written with a high-level language such as Pascalor C. A
behavioral statement such as ““A = B+ (" states only
that two values B and C must be combined to form a new
value A. The functional-block level is characterized both
by the interconnection of abstract components such as
registers, arithmetic-logic units and programmed logic
arrays as well as a control sequence which specifies the
order of register transfers.

While many design philosophies can use this addition
statement to describe a functional-block adder module
behaviorally, the CMU-DA system uses the behavioral
statement to suggest functional block components such
as registers to hold the three values, a logic module
capable of performing an add, and data paths capable of
routing information from registers B and C through the
add module to register A. Any single behavioral state-
ment can specify any number of functional-block
modules. Further, this add module can perform addi-
tions specified by other behavioral statements. By con-
sidering the behavioral description as a whole, the design
programs shown in Figure 1 can specify alternate inter-
connections of functional block modules that will imple-
ment the specified behavior.

Input to the CMU-DA system is an ISPS® behavioral
description, which is compiled and translated into an in-
ternal data flow representation called the value trace. Itis
then made available to the design programs at this level,
which offer the following functions to human designers
and external design programs:

* oraphics to plot and display the value trace,
* metrics to calculate and display the analysis based
on the value trace,

December 1983 OTR-9162 83 1200-005981 .00 1983 |FEE

59

e tranformations to the value trace data flow repre-
sentation to improve design quality,

e partitioner that suggests which portions of the value
trace should be implemented with common hard-
ware,

e control step allocation for sequencing events in the
data path and determining design parallelism/
serialism ratios, and

e data path allocation in terms of functional block
components, including the generation of a multi-
level representation that specifies both behavioral
and functional block information.

This article describes the development of a computer-
aided design environment for studying automatic syn-
thesis between the behavioral and functional block levels
of design. The enviroment is based on the value trace,
which can be used to derive alternate system implementa-
tions. The DAA® and EMUCS’ synthesis programs
shown in Figure 1 will also be described and compared.

The value trace

ISPS has been used widely 1o describe computer ar-
chitectures and compare different architectural families.?

ISPS
BEHAVIORAL
DESCRIPTION

VALUE TRACE

1

TRANSFORMATIONS

PARTITIONER

CONTROL STEP
ALLOCATOR

DATA ALLOCATOR

FUNCTIONAL
BLOCK
DESCRIPTION

Figure 1. Behavioral to functional block level of the CMU-
DA system.

Its use has been extended to the description of general
digital controllers. And in the context of describing com-
puter architectures, synthesis programs are used to
generate alternate implementations of the architecture.

Synthesis programs require a representation internal
to the design programs to permit easy recognition and
implementation ot design features. Snow proposed a
data-flow representation—called the value trace—for
this purpose.®!! The value trace is a directed acyclic
graph (DAG) similar to those used in optimizing com-
pilers and generated directly from an ISPS description.
An examination of the value trace provides an under-
standing of the synthesis capabilities needed in behav-
ioral-level IC design.

The nodes of the value trace graph, called activities or
operators, represent operations to be performed. The
arcs of the graph, called values, represent the data flow
from one operator to another. To the basic DAG used in
optimizing compilers, Snow added control ¢onstructs to
allow conditionals and subroutines. He also identified
value-trace transformations that optimize the implemen-
tation without altering behavior. Before considering the
effects of the transformations, it is necessary to under-
stand the structures of the value trace.

At the highest level, the value trace is divided into in-
dividual groups of operations (or subgraphs) called VT
bodies. This division is determined from the ISPS
description and occurs at procedural boundaries and at
labeled blocks. Each VT body is further divided into
operators or activities of three types: arithmetic and logic
operators, control operators, and value-trace-specific
operators. Arithmetic and logical operators are defined
in ISPS and perform such functions as addition and equiv-
alence testing. Control operators can invoke other VT
bodies, restart the current VT body, and control the condi-
tional choice associated with data multiplexing or control
branching. Some operators are specific to the value trace
and its needs as 4 representation for hardware synthesis.
Examples of VT-specific operators are those required for
reading a value subfield, or performing sign extension
when reading from a smaller into a larger carrier.

Figure 2 shows a sample ISPS two-part description
taken from the description of the MOS Technology In-
corporated MCS6502 microprocessor. The first part
defines the /R, P, and Fregisters: /R and P are eight bits
wide with the left-most bit numbered 7 and the right-
most bit numbered 0, while the Fregister is one bit wide.
Nis defined to be a synonym, or mapping, for bit 7 of the
Pregister, Va mapping for bit 6, etc. The second part of
the ISPS fragment decodes the three most significant bits
of the instruction register and chooses one of a set of
alternative actions based on that decoding. For example,
if bits 7 through 5 contain the value 2, the variable F'is
assigned the complement of the overflow bit.

The value trace fragment in Figure 3 shows this same
decoding loop, with the last four branch alternatives
eliminated for space reasons. Each block represents a
value-trace operator. For example, the operator NOT
outputs the complement of its input value. The operator
<r>, called a bit read, produces the subfield of its left
input, which begins with the bit specified by its right in-
put and continues to the left for the width specified by

COMPUTER

the output. The compound operator, consisting of the
blocks SEL (SELECT) and END (END SELECT) and
the items connected to them by dashed lines, is called a
SELECT. It is used in the value trace to implement the
DECODE and IF...THEN constructs. In Figure 3, it
decodes the instruction register. Alternate actions are
shown side-by-side with the value of the selector required
for a particular action shown at the top of that action.
The result of the chosen action is then understood to be
passed to the END SELECT, where it continues to the
rest of the VT body.

Besides the value trace representation, Snow defined
three major groups of optimizing transformations:
operator transformations, which act on individual
operators or groups of operators; SELECT transforma-
tions, which act on the SELECT construct, individually
or in groups; and VT body transformations, which work
with individual or grouped VT-bodies. Snow has de-
scribed them in detail, but summaries of some of his de-
scriptions should be helpful here:

* Constant folding is a simple, classical optimizing
transformation, replacing an operator that acts sole-
ly on constants with a new constant, For example,
the PLUS operator associated with the statement
2 + 3 could be eliminated and replaced with the con-
stant 5. Constant folding may also be applied to a
SELECT, in which case the appropriate branch of
the SELECT is retained and the others eliminated.

¢ Redundant operator elimination is classical trans-
formation similar to common subexpression elimi-
nation in optimizing compilers. It may be used when
two or more operators of the same type have the
same inputs and eliminates redundant operators,
referencing their outputs with outputs of the re-
tained operator.
e SELECT motion replaces similar activities within
the branches of a SELECT with a single activity out-
side the SELECT, and vice-versa. To be moved out
of a SELECT, activities must be of the same type,
have the same inputs, and occur in all branches.
SELECT factoring removes branches from a given
SELECT, then uses them to form a new SELECT
cascaded with the old one. SELECT combination is
the inverse of SELECT factoring.
¢ VT body inline expansion is analogous to the inline
subroutine expansion, replacing a call toa VT body
with a copy of that VT body.
* VT body formation is the inverse of VT body inline
expansion; it encapsulates a group of operators into
a new VT body and adds a CALL to this new VT
body from the original.
Loop unwinding consists of inline expansion of a
looping VT body to permit constant folding and
other transformations. It replaces a loop counter
with a finite number of calls to a given subroutine.

The first benefit of optimizing transtormations is the
reduction of the biases inherent in the ISPS description.
The designer’s ISPS programming style may break up
behavior into separate procedures, and the architecture
description may have separate ISPS procedures for each
addressing mode and machine instruction. There may

December 1983

also be higher level procedures that decode groups of in-
structions, such as the conditional branches, and finally
one concise top-level procedure that describes decoding
of all the instructions in terms of calls to the above pro-
cedures. While a system architect may write and under-
stand a one-page, instruction-decoding loop that calls
four pages of detailed procedures, inline expansion may
be used to convert the internal representation into a five-
page loop that more closely represents the final control
implementation.!2

IR<7:0>, ! INSTRUCTION REGISTER
P <T:0>, | PROCESSOR STATUS REGISTER
N<> :=P<7>, ! NEGATIVE RESULT
V<> :=P<6>, !OVERFLOW
B<> :=P<4>, !BREAK COMMAND
D<> :=P<3>, !DECIMAL MODE
l<> :=P<2>, !INTERRUPT DISABLE
I<> :=P<1>, !ZERD RESULT
C<> :=P<0>, !CARRY
F<0>, ! TEMPORARY VARIABLE

DECODE IR<7:5> —

BEGIN
#0:=F = NOT N,
#1I=F=N,
#2:=F = NOTV,
#3:=F=V
#4:=F = NOT C,
#:=F=0C,
#6:=F = NOT Z,
#1:=F =1,

END NEXT

Figure 2. Sample ISPS description from the MCS6502
microprocessor.

IR P
¥ 5
<r> L 5 >— 9
SEL 110 i 2
\ A v 7 v 6 J 6
<> <r> <r> <r>
l v
NOT NOT
END
“ 1+ v FLv -_ v FLv F
F
Figure 3. Value trace fragment of ISPS instruction register.

61

In addition, transformations eliminate duplicated
operators and control steps. Successive behavior-level
statements with common subexpressions can be com-

a b 1
/
8 /] //8 8 8
! Ty
x1 0PO 0P1 x2
AND AND
L,d} Ig‘J
A 0P2
+
ISPS:
//9 A<T:0>,
\ 4
B<T7:0>,
x4 | OP3 C<7:0>,
<R>
C=(AandB) + (Aand 1)

RESULTING VALUE TRACE
(VT Body v2):

Figure 4. A short sample of a value trace body.

o

a REGO REG1
ouT ouT
- T oy

INO IN1
PROCO
out

INO N1
PROC1

(0PO) ouT

INO INt
PROC2
out

IN
MAPPING:
PROCO (INO) — {0P0.in0)] REG2
PROCO (IN1) — (OP0.in1]
PROCO (OUT) — (OPO.in0, OPO.in1, OP2.in}

Figure 5. Hardware implementation executed by a single-control
action.

62

bined. Calculations are made once, and the results are
stored in a temporary variable. Besides eliminating
duplicated operators and control steps, value trace
transformations can eliminate redundant hardware.
Thus, they function at the systems level of design as a
design tool.

Finally, because of the nature of the data flow
representation, the synthesis programs can change the
order of the operations specified in the ISPS descrip-
tion—so long as data dependencies are satisfied—and
can change design parallelism. This resequencing of con-
trol steps is one of the more powerful features of the
value trace. In summary, the ISPS description can be
used as an initial description of the behavior to be im-
plemented in hardware. The value trace is then used as a
basis for manipulating designs and making decisions
about the control and data parts of the design.

Sequencing in design synthesis

Value trace descriptions of a machine’s behavior can
be conveniently implemented in hardware in a variety of
forms. These different implementations are character-
ized by the design paralilelism, which is set during the
control step allocation of a VT body, before the func-
tional-level synthesis that specifies the data path of the
final implementation.

Designers can implement a whole VT body, such as in
Figure 4, directly in hardware. Value-trace operators
would be replaced by combinational circuits and arcs by
wires. Figure 5 represents the resulting implementation,
which executes in a single control action. Operators 0, 1,
and 2 (OPO, OP1, and OP2) have been replaced by Pro-
cessors 0, 1, and 2, respectively (‘“‘operatpr’® denotes a
VT-level operation; ‘‘processor’” or ‘‘hardware oper-
ator,”” a functional level hardware module such as an
adder). The values in registers 0 and 1 feed into the VT
body inputs, while output goes into register 2. This im-
plementation is as paraliel as the original algorithm per-
mits, but it requires many hardware operators. It would
be more desirable to share hardware operators among
abstract operators and reduce hardware requirements.
Such sharing requires that a single control action be
divided into a series of separate actions.

A control step is the basic control operation in a digital
machine. It is often implemented as a state in the con-
trolling state machine. When the value tracc is first
translated from the ISPS description, only necessary
control and data dependencies are represented. Thus,
value-trace-level operators that could be implemented in
parallel are identified. Control-step allocation then
assigns value-trace-level operations to control steps, and
operators c¢an be sequenced serially or with maximum
parallelism. Therefore the control-step allocation deter-
mines the serial/parallel nature of the design and approx-
imates cost-speed trade-offs.

Control-step allocation also specifies values to be
stored for use in the next control steps and, consequent-
ly, determines data path storage needs. For example,
operators 0 and 1 might be assigned to the first control
step in Figure 4, and operator 2 to the second. Since the

COMPUTER

values from operators 0 and 1 (OP0O.out and OP1.out)
are generated in the first control step but used in the sec-
ond, they need to be stored in registers, as illustrated in
Figure 6. Here, processor 0 implements operator 0 during
the first control step and operator 2 during the second
control step. A multiplexer is also needed to gate the
value into register 1. Figure 7 shows the maximium serial
implementation, a single value-trace operation per con-
trol step. In this design, a single processor is shared by all
three combinational value trace operators.

A simple, automatic control-step allocator now pro-
vides a means of generating sequenced value trace de-
scriptions for synthesis programs. And as the figures
show, different hardware implementations can be syn-
thesized from the same value trace. Each implementation
requires a different number of control steps and a dif-
ferent amount of processing hardware, producing a cost-
speed trade-off. In addition, a behavioral statement may
be implemented with many functional modules, which
may be shared with other behavioral statements, a
feature characteristic of CMU-DA design programs.

EMUCS data path synthesis

An algorithmic approach to digital data path synthesis
has been developed in a program called EMUCS. The in-
put to the algorithm is a value trace translated from an
ISPS description, while the result is a functional-block-
level representation of the data path. The algorithm aims
at an implementation of a VT body at minimal ‘“‘cost’’ in
terms of any quantitative parameter such as power or
chip area. The algorithm maps, or binds in a step-by-step
fashion, value trace elements to hardware elements—
operators (which are bound to processors), stored values
(which are bound to registers), and transfer paths (which
are implemented as buses, multiplexers, and connec-
tions). Control steps have already been specified by the
control step allocator and are not changed during the
data path synthesis.

The synthesis algorithm, as proposed by McFarland, 3
is iterative in nature. It first analyzes the existing in-
termediate data path to decide which value-trace element
to bind. It then binds that one element, changing the data
path as necessary. Then it iterates, reanalyzing and bind-
ing until all value trace elements have been bound and the
final data path created.

The analysis step generates cost tables that reflect the
feasibility of binding each value trace element to each
hardware element. It evaluates bindings that require
more hardware or more complexity as being more costly.
After computing costs, the algorithm searches the cost
tables to find the least expensive binding, not from the
standpoint of the lowest cost during this step, but
because it might minimize costs in the next iterations.

For example, the program can make one of several
possible bindings during an iteration. Hardware design
rules might prevent it from making a similar binding dur-
ing the next iteration. To illustrate, the current binding
might have used hardware element 1 during the third
time interval. In the next iteration, it would be impossible

December 1983

MUXO0 (INO) — OP2.out;
MUXO0 (IN1) —:0P1.out:
MUX0 (0UT) — 0P2.out,

IN1

MAPPING:
INO IN1
MUX0
ouT
v
a
: REGO REG1 b.c,
Ogl?tl ouT ouT 0P1.0ut
8 8
INO IN1 INO
AND, + PROCO AND PROC1
(OPO, OP2) ouT (OPY) ouT
8

0P1.out

Figure 6. High serial control-step implementation.

to bind another value trace element to hardware element
1 during the third time interval.

To eliminate potential conflicts, the algorithm looks
not only at the least costly, but also at the second least
costly value-trace element. The lowest cost is guaranteed
only if that element can be bound during this iteration.

0P0.out l L

b.c.
) IN N 0P1.out
REGO REG1 REG2
ouT ouT ouT
—— —

INO IN1
MUX0
ouT

INO IN1
MUX1
ouT

INO N1
PROCO
ouT

AND, +
(0PO, OP1, OP2)

MAPPING: P
REG1 (IN) — OPO.out! 1s
REG1 (OUT) — 0P2.in0

MUXO (INO) — OP0.in0, OP1.in0

MUXO0 (IN1) — OP2.in0

MUXO (OUT) — OP.in0, OP1.in0, OP2.in0
MUX1 (INO) — OPO.in1, OP2.in1

MUX1 (IN1) — OP1.in1.

MUX1 {OUT) — OP0.in1, OP2.in1, OP1.in1

Figure 7. Maximally serial implementation with single value trace

operation for each control step.

63

Otherwise the second lowest may be the best. The dif-
ference between the two lowest costs for each value trace
element then becomes a measure of how importantitisto
bind that element during this iteration—of how much
stands to be ‘‘saved.”’ If the difference is great, it might
cost much more to bind it later; if small, it should not
cost much more to bind it later. The algorithm chooses
the binding that saves ‘‘the most’’; this is the min-max
criterion. But this cost evaluation is short-sighted, since
these binding costs can change with every new binding.
Nonetheless the algorithm still produces powerful results.

Cost tables. The cost-table calculations are based on
cost parameters reflecting the need to use, create, and/or
modify hardware to make a binding. The cost parame-
ters form a database that determines the preferred bind-
ings. By changing the database, the same synthesis algo-
rithm can create different designs from the same value
trace, the same control-step allocation, same registers,
and same processors (with functionality possibly
changed). Thus, the algorithm’s primitive cost parame-
ters are the only internal factors that affect design style.

Whenever a binding uses a piece of hardware (such as
storing a value in a register), there is a use cost propor-
tional to the size of the hardware and the number of con-
trol steps involved. Similarly, create costs are used to
assign a cost to the installation of a piece of hardware,
such as a multiplexer. The final costs reflect modifica-
tions to existing hardware, as in adding an input to a
multiplexer. These modify costs are proportional to the
size in bits of their modifications. Since hardware
modifications cannot be bound to hardware operators
and VT operators cannot be bound to registers, we have
separate cost tables for each type.

A sample iteration. A quick pass through an iteration
of the algorithm will make the process clear. Figure 8
shows the design of a partially bound VT body parti-
tioned into two control steps. Stored values (VALX) have
already been bound to registers 1 and 2. Operator 3
(OP3) has been bound to processor 1 (PROCI). Figure 9
shows the partial data path with bindings labelled by the
corresponding elements (i.e., value 3 is bound to register
2). Table 1 shows the updated operator/processor cost
table for this iteration of the algorithm. The valuc/
register cost table is not shown, since all the values have
already been bound.

vALG |REGZ.

Figure 8. Value trace body fragment in two control steps.

64

PR
Croe) ™
VAL1 VAL2
VAL4 VAL3
REG1 VALS REGZ | yaLE

Figure 9. Intermediate data path with bound design
values.

The entries for operator 3 in the operator/processor
cost table are shown as X, since that operator has already
been bound to processor 1. Notice in Figure 8 that
operator 4 cannot be bound to processor 1 since that
would prevent operator 3 from using processor 1 during
control step 2. To analyze the cost of binding operator 2
to processor 3, we first check for use conflicts. Since pro-
cessor 3 is not in use during control step one, we proceed
to the cost of adding the functionality of opecrator 2
(AND, +, etc.) to processor 3. In this simplified exam-
ple, we will assume that the function has no assigned cost
and that all other cost elements relate to connectivity. We
start at the operator’s left input, which is fed by value 2.
Value 2 is bound to register 2, so we need to calculate the
cost of connecting the register 2 output to processor 2 left
input. Since the processor 2 left input is currently uncon-
nected, the connection could be a direct connection at
the parameterized cost of 10 units. Similarly, a constant
value of 1 could be directly connected to the processor 2
right input at a cost of 10 units.

What is left is the cost of connecting the operator 2
output. Through the value trace, we see that value 4 is
bound to register 1, but the constraint of a single input
prevents a direct connection. So a multiplexer with an in-
put from processor 1 output feeding register 1 must be
created. The output of processor 3 would then be con-
nected to an input of this newly created multiplexer. The
create cost for this new multiplexer might be five units,
and 10 units for creating a direct connection from the
output of processor 3 to an input on the new multiplexer.
The accumulated cost for binding operator 2 to pro-
cessor 3 is 35 units, as reflected in the operator/processor
cost table in Table 1. Other binding costs shown there
were calculated similarly.

The min-max criterion now decides which element
should be bound next. The last column in the operator/
processor cost table shows the difference between the

Table 1.
Operator/processor connection costs in units
representing chip area or speed.

op PROC

MIN-MAX
1 2 3 CosT
1 40 30 30 0
2 0 35 35 35
3 X X X X
4 X 30 30 c

COMPUTER

two lowest costs in each row. To minimize the loss, we
pick the row with the largest value in this column, the one
for operator 2 in this case, and bind it to the minimum
cost hardware element, processor 1. This choice is not
surprising since the structure of operator 2 is exactly that
of operator 3, which was already bound to processor 1.
Note that until now no changes to the hardware struc-
tures have been made, only predicted through associated
costs. And the hardware is now changed to reflect this
binding decision. The next iteration of the algorithm L
then begins by recalculating the operator/processor cost
table so that another binding decision can be made.

EMUCS MCS6502 design results

To test and measure EMUCS, the program was run on
a series of samples of increasing size, the largest an im-
plementation of the MCS6502 processor instruction set. MEMORY
Its ISPS description was translated into a series of VT 65536
bodies. In its current prototype state, EMUCS can only 2.0p
process a single VT body. Fortunately the inline expan-
sion transtormation previously described could reduce
most of the MCS6502 value trace to a single VT body TEMP
with 197 operators and 181 stored values. 7 0

Two implemenations of this behavior were created,
the first automatically. The eight-bit data paths are m
shown in Figure 10. This automatic implementation 7 0
presented an opportunity for good bus structure, so a
second bus implementation was suggested before any
elements were bound. The resulting eight-bit data paths
are shown in Figure 11. Manually inserting a bus is quite
easy in EMUCS, as are such design interactions as setting
syvnthesis breakpoints, examining the value trace or hard-
ware structures, or binding elements. EMUCS interac- L

N N S

~
=)
-~
o

Figure 10. Eight-bit MCS6502 data path designed automatically by
EMUCS.

tion was patterned after symbolic debuggers to produce a REG8
convenient, semiautomatic synthesis tool. 7 0
To compare the two implementations, bit counts of 2.0p
hardware categories are provided in columns 1 and 2 of 7 0
Table 2. Horizontal lines show the number of bits in data
path modules, such as ISPS declared registers (Dreg),
temporary or other registers (Treg), specified operator,
constants, multiplexer, controller, or bus found in the —l
design. Numbers do not truly reflect the best possible r7
EMUCS performance, since it still is restricted to map- BUS |
ping value trace operators to processors of the same REG12
width. Without this constraint, the number of bits for 7 0
the processor and multiplexer input and output would ALU
decrease appreciably. REG14
The two MCS6502 implementations differ very little, 7 0
except for the differences caused by the added bus. Their
forms are both quite distributed, with many registers fed
by the multiplexer and many point-to-point interconnec- -
tions. Registers tend to hold the values of several dif-
ferent ISPS variables at different times in the VT body’s L MEMORY
sequencing, which explains why the table lists all registers
in the Treg category. Exceptions are the three registers 4,
X, and Y in Figure 10. They are associated almost ex- 7 0
clusively with the ISPS variables A, X, and Y, respective-
ly. This correspondence reflects the EMUCS ability to

combine values with common requirements in the same Figure 11. EMUCS automated design of MCS6502 data paths with
register, but it is less strong in the bus version. bus.

65536

December 1983 65

66

Since both designs were initialized identically, the
number of control steps and state (registers) and pro-
cessor (ALUs) are the same. The only structural dif-
ference is in the transfer path hardware and routing. The
bus implementation uses fewer multiplexers, but at the
cost of an added bus. Although this bus design might re-
quire more area, the regularity imposed by the bus
simplifies fabrication.

VLSI design automation through DAA

During the past decade, knowledge-based-expert
systems have been developed by researchers in artificial
intelligence to help solve design problems when struc-
tures do not lend themselves to recipe solutions. A KBES
is based on the premise that humans solve problems by
recognizing patterns and associating previously effective
solutions with them. Pattern recognition may not always
be based on the complete, current situation; nor is it
recognized with absolute certainty. Still, the presence or

absence of patterns can suggest possible solutions.
Based on this human model, DAA manages design

synthesis from the behavioral to the functional block
level in the CMU-DA system. Its design function resem-
bles the EMUCS program, but its approach is completely
different. The initial knowledge in DAA was encoded
from the algorithms of a previous CMU-DA allocator!4
and from designer interviews.® Then the prototype
system was refined by expert designers. It has now been
implemented as a production system using the OPSS
KBES writing system.!® It formulates the problem using
three major components: a working memory, a rule
memory, and a rule interpreter.

The working memory that describes the current situa-
tion is a collection of elements similar to the data struc-
tures in conventional programming languages:

literalize module
id:adder.0
type: operator
atype: two’s complement
bit-left: 17
bit-right: 0
attibute: +

The above element describes an 18-bit, two’s comple-
ment adder module. Additional information might in-
clude its connection to other components, such as a
register, and a tag referencing an operator in the value
trace. The working memory elements are pattern-matched
by the rule interpreter against the rule memory to deter-
mine what rules are applicable in a given situation.

The rule memory is a collection of conditional state-
ments similar to those of conventional programming
languages, which operate on elements stored in the work-
ing memory. The following sample rule (translated into
English) describes a replacement link to the input of a
module:

If the most current active context is to create a link
and the link should go from a source port to a
destination port

Table 2.
Tabulation of data path components
for EMUCS and DAA.

MODULE TYPE EMUCS-1 EMUCS-2 DAA-1 DAA-2

TREG 182 182 32 58
DREG — - 173 196
ALU 68 68 17 17
PLUS 0 0 17 17
CMP 0 0 0 1
NOT 0 0 4 4
XOR 0 0 8 9
OR 0 0 9 1
AND 0 0 9 9
CONSTANTS 143 143 140 177
MUX IN 673 613 80 92
MUX OUT 186 161 32 34
BUS IN 0 81 569 849
BUS OUT 0 51 146 241
CONTROLLER IN 42 41 32 36
CONTROLLER OUT 80 83 78 95

and the module of the source port is not a
multiplexer or a bus

and there is a link from another module to
the same destination port

and this other module is also not a multiplexer
or a bus,

Then create a multiplexer module
and connect the multiplexer to the destination port
and connect the source port and destination port
link to the multiplexer
and move the other link from the destination port to
the multiplexer.

Rule selection is data driven. The rule interpreter looks
through the rule memory for a rule whose conditions are
all true. If more than one rule is applicable, the rule deal-
ing with the working memory element most recently
modified is selected first. If there are still multiple rules
applicable, the most specific rule is selected. In this case,
the most specific rule is the one with the most condi-
tionals true, since each conditional gives more detailed
knowledge. The process resembles a human train of
thought and the use of special-case before general-
purpose knowledge as far as possible. It is repeated until
no more rules are applicable or until a rule explicitly
stops the process. Separating expert knowledge from
reasoning simplifies the incremental addition of new
rules and the refinement of old ones, since rules have
minimal interaction with one another.

Synthesis subtasks. DAA rules are grouped into a set
of temporally ordered subtasks. Synthesis begins by
assigning hardware storage modules such as registers and
mermories to all VT values declared in the ISPS descrip-
tion. This step corresponds to assigning storage modules
for the major state registers of a machine. Then a VT
body is selected, and control steps are allocated to
develop a parallel design. Next the synthesis task maps all
VT operator outputs not previously assigned to storage
modules. Finally it maps each VT operator to processor
modules, connecting links and supplying multiplexers
where necessary. The two mapping steps regularize the

COMPUTER

behavioral description for the following expert-analysis
phase.

The expert-analysis subtask removes registers from
processor outputs, where sources are stable. Results
from combinational logic modules (processors) are
latched in a temporary register only if the values in the
register sourcing the processor change before the subtask
needs them. Single function operators are combined,
where appropriate, into ALUs.

DAA also examines the possibility of sharing tem-
porary registers. Where possible, it increments, decre-
ments, and shifts operations in existing registers. It also
places registers, memories and ALUs on appropriate
buses. Throughout this subtask, constraints cause trade-
offs between the number of modules and the allocation
of control steps. Once a subtask is complete, the process
is repeated for other VT bodies.

Associated with each DAA subtask is a set of rules for
designing VLSI systems—about 300 for the whole
system—most of which define extensions for partial
designs. By determining at each step whether extending
the design in some way is consistent with constraints,
they enable DAA to svnthesize an acceptable design.

DAA uses a search called Match!6 to explore possible
designs. Following the same design process for each sub-
task, it extends partial design without backtracking in
any problem. Rule selection order within each subtask is
highly variable, depending on the particular combination
of data flow components in a design and the selection
order for VT bodies.

DAA MCS6502 design results

The prototype DAA system had almost 70 rules and
could design a MOS Technology Incorporated MCS6502
microcomputer in about three hours of VAX 11/750
CPU time. We asked expert designers at Intel and Bell
Laboratories to evaluate the design, explain what was
wrong, why it was wrong, and how to fix it. Rules were
modified, new rules were added, and the MCS6502 was
re-designed. DAA recently designed an acceptable
MCS-6502 microcomputer in four hours. Table 2 sum-
marizes the design characteristics. The third column
summarizes DAA-created data paths of the partial
MCS6502 design used by EMUCS. The fourth column
gives the complete design.

Figure 12 shows the eight-bit-wide data paths for the
MCS6502 microcomputer. The 16-bit and one-bit data
paths have been excluded for clarity but are included in
Table 2.

The experts found the complete design satisfactory,
but recommended point-to-point connections and multi-
plexers to reduce contention on the bus and save control
steps. They also suggested using a second eight-bit bus.
These and other recommendations are being incorpor-
ated in the system.

EMUCS and DAA provide two examples of design aids
that synthesize a functional block design from a
behavioral description. Alternate designs produced by
these synthesis programs have similar characteristics and
present reasonable design trade-offs. The following list

December 1983

presents a general comparison of the two synthesis
programs:

¢ EMUCS allocated values to registers more effective-
ly (182 versus 205) than DAA. DAA strictly pre-
served the architectural registers declared in the
ISPS description, yielding a more comprehensible
final design.

¢ Both algorithms specify hardware operators, but
DAA tends to leave some simple logic operations in
separate modules whereas EMUCS tries to combine
all such operations into ALU’s.

* Multiplexer and bus inputs/ouputs must be con-
sidered together. EMUCS mixes point-to-piont con-
nections and multiplixers, but uses buses only when
they are manually introduced. DAA uses a multi-
plexer strategy, introducing buses in a limited
number of situations.

* DAA can change the control-step allocation during
the design process. When processor delays do not fit
into a control step, it changes the control step
assignment and continues.

* EMUCS is written in C programming language,
which uses much less CPU time and memory than
OPSS, a LISP-based system used for DAA. How-
ever, a newer version of OPS5, based on BLISS, is
expected to increase DAA speed 10 times.

¢ DAA has a rich set of domain knowledge (or infor-
mation directly pertinent to IC design) in its rules.
EMUCS has little domain knowledge but applies a

Y i

1 0 MEMORY
65536

255

READ 7 0

7 0 ——l o

Figure 12. MCS6502 eight-bit data path designed by DAA.

67

68

simple, general, parameterized costing algorithm to
the synthesis problem.

In short, EMUCS is highly interactive and may make a
good computer-aided synthesis program, but a KBES ap-
proach, such as DAA offers, should capture more of the
creative design process and thus produce better designs.

Multilevel representation

The CMU-DA multilevel representation maps struc-
tural elements at the functional-block-level map into
nodes and arcs in the value trace. It provides design
trade-offs between more detailed modeling and model
simplification, particularly at the behavioral level.
Multilevel simulation of a digital system sclects sub-
systems at the functional-block level, retaining the bulk
of the svstem at the behavioral level. It is possible to
verify partial designs, substantially reducing turnaround
time and design cost.

Multilevel representation also supports formal verifi-
cation of transformations from one representation to
another (i.e., the synthesis decisions). It can also be used
to feed back information extracted from the lower levels
and thereby control high-level synthesis.

Examples of multilevel representation. To define a
multilevel representation, it is necessary to isolate and
identify structural and behavioral features at each level
and relate them to one another. At the functional block
level, the primitive structural elements are of three major
types: storage elements, such as registers and memories;
transfer paths, such as multiplexers, buses, and demulti-
plexers; and processors, which are combinational circuits
that multiply, add, etc. Although an unallocated value
trace has no structural features, we can identify some
structural elements in an allocated value trace because

controller; EXAMPLE;
COMPUTE {v2] :
cstep [1:11]
mux MUXO0 (INO) (VT__references: v2.x1}:
mux MUX1 (INO) {VT__references: v2.x1::
fwrite REG1 {VT__references: v2.x1;;
and PROCO {VT__reterences: v2.x1;;

cstep [2:2) {
mux MUXO0 (INO) (VT__references: v2.x2:;
mux MUX1 (IN1) {VT__references: v2.x2!;
and PROCO {VT__references: v2.x2};
fwrite REG2 {VT__references: v2.x2;

cstep {3:3] |
mux MUXO (IN1) {VT__references: v2 x3;:
mux MUX1 (INO) (VT __references: v2.x3;;
plus PROCO {VT__references: v2.x3!;
fwrite REG2 {VT__references: v2.x3};

Y

)
end;

Figure 13. DAA mapping of control specifications for
single value trace operations. Reterences correlate im-
plementations of Figures 4 and 7.

values and operations are bound respectively to storage
elements and hardware operators by synthesis programs.

Storage clements are bound to VT-body inputs and
outputs and inputs of value-trace operations. A register
has two ports— an input port and an output port—while
amemory has three, an address port, a data-in port, and
a data-out port. Operations consume values that are
either produced by other operations or are inputs to VT
bodies in what corresponds to a read operation. If the
value is bound to a storage element, the input that con-
sumes the value is associated with the output port of the
storage clement. A value produced by an operation is
stored in an element bound to the output, such that it
maps into an input port of the storage element.

Figure 7 shows an example of how relationships be-
tween registers and values are maintained at the
functional-block level. There, under the heading ‘‘“Map-
ping,” is a partial list of the relationships between be-
tween hardware elements and value-trace values. REGI
is used to hold the output of OPO. According to the
previous definition, the input port of REGI1, IN, maps
into the output value of OP0, OPO.out. Also, the output
port of REG1, OUT, maps into the first input of opera-
tion OP2, OP2.in0.

Transfer paths route values from one operation to
another. Values enter and leave through their input and
output ports, to which values are bound. For example, if
multiplexer input ports are bound to the outpurs of dif-
ferent operations, they map into the values produced by
these operations. The output port of this multiplexer
maps into the union of all the values at the input ports.
Figure 6 shows such a multiplexer fed by the outputs of
two different processors, OP1l.out and OP2.out. The
partial multilevel mapping given in Figure 7 also shows
how the multiplexer output port maps into the union of
the input values.

Processors may be bound to more than one operation
if the operations have been assigned different control
steps. The mapping rule for processors is simple: the in-
put ports of a processor map into the input values of the
operations bound to it, while the output ports map into
the outputs of the corresponding operations and the in-
puts of the operations that they feed. Figure 5 shows a
processor, PROCO, bound to operation OP0. Port INO
of PROCO maps into the left input of OP0 (OP0.in0),
while port IN1 of PROCO maps into the right input of
OPO (OP0.in1). Port OUT of PROCO maps directly into
these inputs and the left input of OP2,

Behavioral features at the functional block level are
modeled by control steps that correspond to register and
memory read/write operations; to port-selection opera-
tions for multiplexers, demultiplexers, and buses; condi-
tional constructs that represent multiway branches, pro-
cedure calls, and returns; and loop instantiations. At the
value trace level, behavioral features are represented by
control flow construects such as SELECTS, VT-body in-
stantiations, transfer of control operations, and array
reads/writes. Each VT body maps into a control step
block at the functional block level. All operations ex-
plicitly represented at the value-trace level map into the
corresponding micro-operations at the functional-block
level. Port selection for transfer paths does not have ex-

COMPUTER

plicit representation in the value trace. They map into the
operation that is active when the port is selected. To il-
lustrate, Figure 13 shows the control specification for the
allocation shown in Figure 7. The control step block,
COMPUTE, maps into the VT body, v2, of Figure 4. In
control step [1:1], input INO of MUXO0 and input INO of
MUX1 (values a and b respectively) are directed through
to PROCO, which ANDs the values. The result is written
into REGI1. Control step [2:2] ANDs the value a with 1
writing the result into REG2, and control step [3:3] adds
the values in REGI and REG2, leaving the result in
REG2. Thus the behavioral references correlate the
specific implementation proposed in Figure 4 and il-
lustrated in Figure 7 and in Figure 13.

These interlevel behavioral and structural references
maintain the correlation between a value trace and func-
tional block implementations. The multilevel representa-
tion generated by the synthesis programs can then be us-
ed by analysis aids, such as multilevel simulators, and
subsequently by verification programs. It can also pro-
vide feedback to system level architects about the results
of automatic or computer-aided synthesis programs.

Allhough there is much research still left to be done,
design aids for the creative IC design process are becom-
ing a reality. The portions of the CMU-DA system
demonstrate promising design approaches and will serve
in the future for further research. The main areas to be
explored include the interaction of KBES with more
algorithmic design methods, the development of better
system-level description languages, and the use of
multilevel representations, which includes multilevel
analysis aids. These synthesis and analysis design aids
will eventually form an effective environment for the
system-level designer. B

Acknowledgments

The authors express their gratitude to S. W. Director,
D. P. Siewiorek, and M. J. McFarland for their advice
on the project; also to J. A. Nestor, who contributed ex-
tensively to our early work on multilevel representations.
This research was funded in part by grants from the
Digital Equipment Corporation, IBM Corporation, and
the Intel Corporation, the Semiconductor Research Cor-
poration, the National Science Foundation (grant ENG
78-25755), and the Army Research Office (grant
DAAG/29/79/C/0213).

References

1. S. W. Director et al., ‘A Design Methodology and Com-
puter Aids for Digital VLSI Systems,”’ IEEFE Trans. Cir-
cuits Systems, Vol. CAS-28, No. 7, July 1981, pp.
634-645.

2. D. E. Thomas, “The Automatic Synthesis of Digital
Systems,”” Proc. IEEE, Vol. 69, No. 10, Oct. 1981,
pp.1200-1211.

3. L. J. Hafer, ‘‘Automated Synthesis of Digital
Hardware,” Proc. IEEE Trans. Computers, Vol. C-31,
No. 1, Jan. 1982, pp. 93-109.

December 1983

70

4. G. Zimmermann, ‘‘The MIMOLA Design System: A
Computer-Aided Digital Processor Design Method,™”
Proc. IEEE 16th Design Automation Conf., 1979, pp.
53-58.

3. M. R. Barbacci, ““Instruction Set Specifications (ISPS):
The Notation and its Applications,”” [EEE Trans. Com-
puters, Vol. C-30, No. 1, Jan. 1981.

6. T. J. Kowalski and D. E. Thomas, *‘The VLSI Design
Automation Assistant; Prototype System.” Proc. 20th
Design Automation Conf., June 1983,

C. Y. Hitchcock IIT and D. E. Thomas, “'A Method of
Automatic Data Path Synthesis,”” Proc. 20th Design
Automation Conf., June 1983,

8. M. R. Barbacci and D. P. Siewiorek, ‘‘Evaluation of the
CFA Test Programs via Formal Computer Descriptions,”
Computer, Vol. 10, No. 10, Oct. 1977, pp. 36-43.

9. E. A. Snow, “‘Automation of Module Set Independent
Register-Transfer Level Design,”” PhD dissertation. Car-
negic-Mellon University, April. 1978.

10. M. C. McFarland, "*The Value Trace: A Data Base for
Automated Digital Design,”’ master's thesis. Carnegie-
Mellon University, Dec. 1978.

~1

11. D. A. Gatenby, “*‘Digital Design From an Abstract
Algorithmic Representation: Design and Implementation
of a Framework for Interactive Design,”’ master’s thesis,
Carnegie-Mellon University, Oct. 1981.

12. R. A. Walker and D. E. Thomas, ‘‘Behavioral Level
Transformation in the CMU-DA System,”” Proc. 20th De-
sign Automation Conf.. June 1983.

13. M. C. McFarland, S. J.. “Allocating Registers. Pro-
cessors and Connections'”, Internal Carnegie-Mellon Uni-
versity Report, Pitisburgh, Pa., Aug. 1983,

14. L. J. Hafer, ‘‘Data-Memory Allocation in the Distributed
Logic Design Style.”” master’s thesis, Carnegic-Mellon
University, Dec. 19

C. L. Forgy, ““OPSS User's Manual,” Department of
Computer Science, Carnegie-Mellon University, July
1981.

16. A. Newell, Heuristic Programming. llI-Structied Prob-
lerns, John Wiley & Sons, New York, 1969,

(7

Donald E. Thomas is an associate pro-
fessor of electrical and computer engineer-
ing at Carnegie-Mellon University. He
received a PhD from CMU in 1977 His re-
search interests include the automatic syn-
thesis of digital svstems, system-level de-
scription languages, and multilevel simu-
lation. He currently serves on the 1EEE
program committee for the Design Auto-
mation Conference, as vice chairman of

the Design Automation Technical Committee, and as an editor

of IEEE Design and Test of Computers. He is also active in the
design and use of high-speed networks for computer-aided in-
struction.

Charles Y. Hitchcock IIl is pursuing
research in computer architectures as a
doctoral candidate in the Carnegie-Mellon
University's Department of Electrical and
Computer Engineering. He graduated
with honors in 1981 from Princeton
University with a BSFE in electrical
engincering and computer science and
received an MSEE from CMU in 1983, He
is a member of the IEEE and ACM.

Thaddeus J. Kowalski is a doctoral can-
didare and IBM fellow in the Carnegie-
Mellon University Department of Elec-
trical and Computer Engineering. He is
currently researching the use of knowl-
edge-based expert systems in computer ar-
chitecture, but his interests also include ar-
tificial intelligence, operating systems,
real-lime systems, and computer architec-
: 7 ture. He graduated from the University of
\Imhman \\uh a BSE in computer engineering in 1977 and
joined the Unix Support Group at Bell Laboratories, Murray
Hill, NJ. He received an MSEE in computer enginecring at
CMNU in 1978, He is a member of the Vaulcans engineering-
honor-service society, Eta Kappa Nu, and Phi Beta Kappa.

Jayanth V. Rajan received a bachelor of
technology degree in electrical engineering
from the Indian Institute of Technology,
Madras, in 1980 and an MSEE from
Carnegie-Mellon University in 1982, He is
currently a doctoral candidate in CMU’s
Department of Electrical and Computer
Engineering. His rescarch interests include
VLSI chip planning and synthesis.

Robert A. Walker is a doctoral candidate
in the Department of Electrical and Com-
puter Engineering at Carnegic-Mellon
University, where he is researching hard-
ware languages as behavioral descriptions
for logic synthesis. His research interests
include optimizing transformations, com-
puter architecture, and programming
language issues. In 1981, he graduated
from Tennessee Technological University

d e

~with a BS and received an MS degree in computer engineering

from Carnegie-Mellon in 1982, He is a student member of the
IEEE, the IEEE Computer Society, ACM, Eta Kappa Nu, and
Tau Beta Pi.

Questions about this article can be addressed to the above

authors at the Electrical and Computer Engineering Depart-
ment, Carnegie-Mellon University, Pittsburgh, PA 15213,

COMPUTER

