A Model of Design Representation and Synthesis!

Robert A. Walker and Donald E. Thomas

Electrical and Computer Engineering Dept.
Carnegie-Mellon University

Abstract

To represent the increasingly complex designs being
produced today, we have developed a unified model of
design representation that uses three hierarchical,
non-isomorphic domains of description that can be
coordinated to represent the entire design. Each of
these domains contains multiple levels of abstraction;
both the domains and the levels are described in detail
In this paper. We then show how this model of design
representation can be used as a model of design syn-
thests. It 1s hoped that this work will lead to a better
understanding of design representation and its rela-
tionship to the synthesis process.

Keywords: Design Representation, Computer Hardware
Description Languages, Design Synthesis.

1. Introduction

The traditional approach to computer design
representation, or design description and documenta-
tion, has been to describe a design using a single Com-
puter Hardware Description Language (CHDL).
Although the exact usage varies, most of these
languages typically describe both the behavior and the
structure of the design, possibly including physical or
geometrical information as well. We feel that
indiscriminately combining this information into one
language does not adequately model today’s increas-
ingly complex designs, and have developed a unified
model of design representation that separates the
behavioral, structural, and physical information into
three domains. These three domains can then be coor-
dinated to represent the entire design. Furthermore,
this model of partitioning domain information has
been used to redefine the traditional (and sometimes
ill-defined) levels of abstraction, bringing them more
into line both with this model and current design prac-
tices.

Since synthesis tools are becoming increasingly
important, we have also developed our model of design
representation to serve as a model of design synthesis,

! This research has been supported in part by the Na-
tional Science Foundation under grant ECS-8207709 and the
Semiconductor Research Corporation under grant 82-11-007.

illustrating the various synthesis tasks that might be
performed. As these synthesis tasks proceed, they
naturally create both increasingly detailed representa-
tions as well as additional inter-domain links as they
transform a behavioral description to a structural
description to a physical description. In this paper, we
give a definition of design synthesis using this model,
and show some examples of synthesis tasks

Behavioral Structural

perform. specs.
algorithms
register transfers
boolsan eqns.
differential eqns.

CPUs, memories
ardware modules
ALUs, MUXs, rsgisters

clt)cell sstimates, details
(l') cell estimates

o floorplans

O clusters

Tphysical partitions

Physical

Figure 1.
Domains of Description -
An Axial View

2. An Overview of the Model

Our model of design representation can be described
using three axes, each representing one of three
domains of description, much the same as Gajski and
Kuhn's Y-chart [1]. Along each of these axes, multiple
levels o f abstraction, or levels of detail, are represented
This view of our model is shown in Figures 1 and 2.
The first figure shows three domains of description,
named the Behavioral, Structural, and Physical
Domains. These domains are represented by three
axes approaching a common vertex, with the level of
abstraction decreasing as one moves toward this ver-
tex. The next figure depicts the same view, adding a
standard set of levels of abstraction (shown as rings)
that pass through all three domains.

Presented at the 22nd ACM IEEE Design Automation Con ference

Architectural

Behavioral A o Structural
perform. specs. CPUs, memories

%)

X gartes,

Physical

Figure 2.
Levels of Abstraction versus

Domains of Description -

jcal partitions

gorithmi
nal Bl
xﬂ% ALYs, MUXs, registers

An Axial View
Behavioral Structural Physical
Domain Domain Domain
performance CPUs physical
. Specs. memories partitions
Architectural switches
‘ Level controllers
) busses
algorithms hardware clusters
|| Algorithmic {manipulation modules
Level of data data
structures) structures
operations ALUs floorplans
Functional rzglasr:frers ::gui):ers
Block Level state microsequencer
sequencing microstore
boolean gates ceil
Logic Level equations flip-flops estimates
latches
‘ differential transistors call
- equations capacitors estimates
Circuit Level resistors cell
i detalils
Table 1.

Levels of Abstraction versus
Domains of Description -
A Tabular View

Table 1 shows an alternate, more familiar, view of
this same model of design representation. It
represents the model as a table with the levels of
abstraction represented by rows, and the three domains
of description by columns. As with the previous model,
a design includes components from all three domains

In this model of design representation, each domain
is hierarchically decomposed into different levels of
abstraction, and each decomposition is represented as
a directed acyclic graph. Although these decomposi-
tions may also be represented as trees, this is not a

necessary condition. Furthermore, the decomposition
of one domain is not necessarily isomorphic to the
decompositions of other domains. This is discussed in
more detail later in this paper

Other researchers have similar models of design
representation; Gajski and Kuhn's Y-chart [1] and
Knapp and Parker’s Design Data Structure (DDS) [3] are
two examples. We have combined what we feel are
the best features from each of these two schemes, and
added some of our own work to produce the model
described in this paper. All three models are com-
pared in a later section of this paper.

3. Domains of Description

In our model of design representation, there are
three domains of description called the Behavioral,
Structural, and Physical Domains. Each of these
domains represents its particular portion of the total
design description and must be coordinated with the
other domains through inter-domain links. Although
other divisions of domain information have been advo-
cated (e.g., by Gajski and by Knapp), we feel that this
division is the most natural. As with the modules
advocated by Parnas (5|, each domain is "characterized
by its knowledge of a design decision which it hides
from all others.” Thus, the Behavioral Domain
describes the basic functionality of the design, the
Structural Domain the abstract implementation of the
design, and the Physical Domain the physical imple-
mentation of the design. Other design decisions, such
as those involving timing or topology, can be sub-
sumed by the decisions above and are not represented
by separate domains in our model

3.1. Behavioral Domain

The Behavioral Domain describes the behavior, or
functionality, of the design, and contains obvious static
and dynamic components. The static component
describes the operations, while the dynamic portion
describes their sequencing and timing. Thus, differ-
ences in algebraic functionality, pipelining, and timing
are all changes in behavior For example, at the Func-
tional Block Level, the Behavioral Domain describes
the design 1n terms of register transfers, possibly
including timing information. If the manipulation of
the registers is changed, the static Behavioral Domain
information is changed as well. Similarly, changing or
introducing pipelining or timing information changes
the dynamic behavior, and possibly the static behavior
as well

3.2. Structural Domain

The Structural Domain describes the logical struc-
ture, or abstract implementation of the design, usually as
the structural inter-connection of a set of abstract
blocks. It is the mid-point between the Behavioral and
Physical Domains. For example, at the Functional
Block Level, the Structural Domain describes the

Presented at the 22nd ACM IEEFE Design Automation Con ference

design in terms of the abstract ALUs, MUXs, and
registers needed to implement the register transfers
required by the Behavioral Domain. Since this domain
also describes the structure of the control part of the
design, changes to the abstract implementation of the
controller are also changes to the Structural Domain
information. This includes changing the form of the
controller from a PLA-based to a microcoded con-
troller as well as changing the contents of a control
ROM.

3.3. Physical Domain

The Physical Domain describes the physical imple-
mentation of the design, or the realization of the Struc-
tural Domain’s abstract structural components with
real physical components. At the upper levels of
abstraction, this domain usually contains constraints
on the physical partitioning or floorplanning of the
design. At the lower levels of abstraction, this domain
contains a description of real physical components and
their geometry (cell detailing). As an example, at the
Functional Block Level, the Physical Domain describes
the floorplanning needed to implement the required
abstract ALUs, multiplexors and registers. At all lev-
els, speed, power, and area constraints are often part
of the Physical Domain.

3.4. Further Characterizing the Domains

Each of these three domains of description is
hierarchically decomposed into different levels of
abstraction, and these decompositions are represented
as acyclic graphs. Figure 3 shows an example of part
of a RAM that consists of an array of cells, each cell
containing the same collection of transistors,
represented as an acyclic graph. Although the general-
1zed acyclic graph may be more efficient for represent-
ing regular structures, many designs can be
represented by trees (a constrained type of acyclic
graph) as shown in Figures 4 and 5.

Furthermore, the decompositions in each of the
three domains may be nonisomorphic, meaning that
there is not a one-to-one mapping between the decom-
position structures. For example, Figures 4 and 5 dep-
ict the Behavioral, Structural, and Physical Domain
components of part of a design Figure 4 shows the
synthesis of an abstract addition operation, in the
Behavioral Domain, with two Structural Domain com-
ponents - an adder, to perform the actual addition, and
an input MUX, to supply the adder with the proper
inputs. Since a single Behavioral Domain element
corresponds to two Structural Domain elements, the
two domains are not isomorphically decomposed
Proceeding further with the synthesis, these structural
elements might be implemented directly in hardware,
with a one-to-one mapping between the Structural and
Physical Domains. However, it might also be possible
that, based on the implementation technology, it makes
more sense to implement both the adder and subtractor
as a single ALU. This 1s shown in Figure 5, and again

the two domains are non-isomorphically decomposed
Thus, to represent a design as a coordinated represen-
tation of these three domains, it will be necessary to
maintain three different decomposition structures.

Figure 3.
Hierarchical Decomposition of a RAM

Behavioral Domain Structural Domain

Algorithmic
Leve!
Functional
Block Level
Figure 4.
Implementing an Addition Operation
With an Adder and a Multiplexor
Structural Domain Physical Domain
Agorthmic ittt e
Lavel .
Functional r ALU\" MUX
Block Level]
—]
-

Figure 5.
Implementing Structural Operations
In a Particular Technology

Each of the three domains may also have both a
static and a dynamic component. The static component
describes the (essentially) time-invariant portion of the
description - the operations, structures, etc. Typical
static components are addition and subtraction opera-
tions 1n the Behavioral Domain, and adders and sub-
tractors in the Structural and Physical Domains. The
dynamic component describes the ordering of the
operations and the time between operations. Typical
dynamic components are timing constraints in the
Behavioral Domain, execution times for the abstract
operators in the Structural Domain, and actual execu-
tion times in the Physical Domain.

Presented at the 22nd ACM IIYEE Design Automation Con ference

Each of the three domains may also contain both a
description component and a constraint component.
The first component, the description, is a representa-
tion of the design as it exists at that point in the design
process. This description may be provided by the user
(e.g., as the input description for a synthesis system)
or it may be built under program control as an inter-
mediate or final representation of the design and
linked to the user-supplied information. The second
component of each domain, the set of constraints, res-
trains the design process. Timing constraints, area
constraints, and power consumption constraints are
typical examples. Although constraints are perhaps
most often applied to the Physical Domain, they are
not limited to that domain.

4. Levels of Abstraction

In our model of design representation, there are
many levels of abstraction, each containing a
Behavioral, Structural, and Physical Domain com-
ponent. This section defines the uppermost levels in
that model. Unfortunately, many of the names of
these levels already have connotations that associate
them with a single component of a particular level
rather than the entire level. For example, the terms
Logic Level and Circuit Level might suggest to many
people only the structural component of those levels,
and the term Algorithmic Level might suggest only the
behavioral component of that level. Nevertheless, we
have retained the more accepted terminology in our
model, believing that inventing new names at this
point would only further confuse the issue.

4.1. Architectural Level

The Behavioral Domain at this level describes the
behavior of a system as a set of performance specifica-
tions, or gross operational characteristics. It is con-
cerned with pleces of hardware that manipulate data
and store results, without being concerned with the
algorithms describing the details of how this occurs.
In many instances, these performance specifications
are supphied as a combination of an informal
behavioral description and Physical Domain con-
straints.

The Structural Domain components that correspond
to these performance specifications are processors,
memory units, switches, buses, and device controllers
These elements are usually thought of as operating
concurrently and communicating via ports or buses. In
most formal descriptions at this level, the structural
information makes up the bulk of the description,
perhaps because of a lack of formal methods for
describing the behavior.

In the Physical Domain, high-level physical parti-
tioning of the design may be described. Depending on
the implementation technology and the complexity of
the design, this might correspond to chip or cabinet
level vpartitioning. Besides the description, the

Physical Domain might also contain constraints (e.g
power consumption, area, etc.).

4.2. Algorithmic Level

This level, often called the Behavioral Level,
describes the design at a level syntactically similar to
programming languages. Complex algorithmic expres-
sions, data structures, procedures, processes? and
scoped variables are all used to describe the behavior
of the design. Algorithms describe the necessary
manipulation of data structures, and procedures,
processes, and scoped variables provide the necessary
code management. Examples of Behavioral Domain
components at this level are instruction decoding,
effective address calculation, and instruction execu-
tion

In the Structural Domain, hardware modules (e g, a
separate data path and controller) represent the
processes of the Behavioral Domain. These hardware
modules are thought of as operating concurrently with
each other, although their internal operation may
include both sequential behavioral and statement-level
parallelism.

In the Physical Domain, clustering of operators into
physical subsystems might be described. Clustering, or
partitioning, refers to grouping functionally similar
operations together as determined by some measure of
prozimity. Operators with a high proximity tend to
have a high potential for sharing hardware, and can be
grouped together 1n the same physical subsystem.
Besides this description component, constraints on
power consumption, area, etc. may also be described.

Timing information may also become a concern at
this level, as high-level behavioral timing constraints
For example, if the hardware being designed must
interface to other hardware, it will be necessary to
describe constraints on its execution time and on its
interface timing. These constraints may either be
described as part of the behavioral descriptions, or
they may be described in a separate constraint
language.

4.3. Functional Block Level

Often called the Register Transfer Level, this level
describes the design at a level much closer to the
underlying hardware than the previous levels. The
Behavioral Domain contains either arithmetic or logi-
cal operations and transfers between registers (hence
the name Register Transfer), sequencing between
states, or a combination of both. A wide range of
methods are used to describe this behavior, ranging
from functional or dataflow languages through pro-
cedural languages to non-procedural, state-machine
oriented languages.

2 In hardware terms, each process is implemented by a
separate data path and control unit.

Presented at the 22nd ACM IEEE Destgn Automation Con ference

In an abstract fashion, the behavior at this level is
implemented in the Structural Domain using ALUs,
adders, comparators, MUXs and registers. All these
elements execute in parallel, and are usually regulated
by a single control unit.

Depending on the target technology, it may be possi-
ble to implement this structural description directly in
hardware. If this is not the case, or more detail is
desired, the Physical Domain at this level might be
concerned with floorplanning the layout of the design
by specifying the geometrical arrangement of the
Structural Domain components. Finally, as with the
upper levels of abstraction, power and area constraints
may also be part of this domain.

Since this level i1s much closer to the underlying
hardware than the previous levels, timing plays a much
bigger role than before. At this level, timing informa-
tion consists of major cycles, or machine cycles, each
corresponding to a major control state, and further
subdivided into a fixed number of minor cycles, or data
flow cycles. Timing information at this level may also
contain references to discrete events, particularly in
asynchronous designs.

Perhaps for the first time, the control part of the
design is an explicit entity at this level, rather than
being Implicit in the behavioral description as before.
Like the data portion, the control portion may have
behavioral, structural, and physical components. At
this level, the Behavioral Domain component describes
the manipulation and sequencing of control signals,
which in turn effects actions in the data part. The
Structural Domain component, representing the
abstract implementation, describes abstract structures
such as PLAs and microcoded control ROMs (includ-
ing the information stored in the ROM). The Physical
Domain component is similar to that of the data path,
requiring either implementation in hardware, or a part
in the floorplanning process.

4.4. Logic Level

This level, often called the Gate Level, is a slightly
more detailed version of the Functional Block Level.
In the Behavioral Domain, 1t describes the design as a
switching circuit, expressing the behavior in terms of
boolean equations and finite automata. In the Struec-
tural Domain, this behavior is implemented by gates,
flip-flops, and registers. All these elements are usually
thought of as operating in paraliel

Like that of the Functional Block Level, the Physical
Domain at this level may be directly realizable in
hardware. TFor instance, in TTL-based design the
Functional Block Level components without hardware
counterparts might be hierarchically decomposed into
gates, flip-flops, ectc.,, which can be realized in
hardware. Alternately, this level might be virtually
1gnored, with the designer proceeding directly from the
Functional Block Level to the Circuit Level. For
example, the 1mplementation of the OM2 chip

described in Mead and Conway’s Introduction to VLSI
Systems {4] proceeds directly from a Functional Block
Level floorplan (in terms of registers, a shifter, and an
ALU) to a Circuit Level implementation (in terms of
transistors and inverters), ignoring the Logic Level.
Finally, as with the upper levels, power and area con-
straints may also be part of this domain

As the 1mplementation of the design becomes
increasingly detailed, timing descriptions and con-
straints may become more detailed as well, possibly in
all three domains. At this level, timing may include
references to arbitrary transitions, edges, or levels,
and 1t may also include detailed information on setup
and hold times, propagation delays, etc

4.5. Circuit Level

In the Behavioral Domain, this level describes the
behavior of the design in terms of electrical potential
and current using differential equations. In the Struc-
tural Domain, 1t describes the structure of the design
in terms of such circuit components as transistors,
diodes, resistors, and capacitors, according to the
implementation technology.

In the Physical Domain, two activities are dominant
in VLSI design. First, cell estimation produces a rough
circuit design in terms of approximate geometries and
their placement, perhaps wusing stick diagrams.
Second, cell detatling specifies the exact geometry and
placement of the components, completing the design

5. Design Synthesis

This model of design representation also serves as a
model of design synthesis, using the multiple levels of
abstraction and three domains of description defined in
previous sections. Within this model, design synthesis
15 defined to be one or more of the following:

® a few-to-many translation from the Behavioral
Domain to the Structural Domain,

® a few-to-many translation from the Structural
Domain to the Physical Domain, or

® a few-to-many translation from a higher level of
abstraction in one domain to a lower level of
abstraction in that same domaln, or in another
domain.

This translation process is few-to-many, meaning that
there may be many structural implementations of a
particular behavior, and many physical implementa-
tions of a particular structure, but for a given physical
implementation there are few corresponding struc-
tures, and for a given structure there are few
corresponding behaviors.

In more practical terms, design synthesis is the pro-
cess of translating a high level (of abstraction)
Behavioral Domain description to a low level Physical
Domain description. This synthesis process includes
translating and building inter-domain links from the

Presented at the 22nd ACM IFEE Design Automation Con ference

Behavioral to the Structural to the Physical Domain, as
well as adding enough additional detail to produce a
low level description from a high level one. Thus, the
end goal of synthesis 1s to produce a Physical Domain
description at a low enough level to be implemented in
hardware.

Behavioral Structural

control step _ data path
itioni and controller
parntioning = liocation

algorithms

register transfers ALUs, MUXs, registers

cell estimates, details module binding
cell estimates

floorplans ¢

Physical

Figure 8.
Synthesis Tasks

Figure 6 shows some examples of synthesis tasks in
the CMU-DA [6; design methodology. The first task,
control step partitioning, is a translation from a high
level of abstraction in the Behavioral Domain to a
lower level of abstraction in that same domain. The
second task, data path and controller allocation, is a
translation from the Behavioral Dcmain to the Struc-
tural Domain at the same level of abstraction. The
third task, module binding, is defined similarly but
involves the Structural and Physical Domains. All
three tasks are few-to-many translations in the sense
that, for example, for a given set of register transfers
(Behavioral Domain) there are many sets of ALUs,
MUXs, registers, etc. (Structural Domain) that could
be used to specify the abstract implementation of those
register transfers. Choosing one of these many alter-
natives Is exploring the design space.

This definition of synthesis also implies that, at a
given point in the synthesis process, a design is
represented by one or more components from each of
the Behavioral, Structural, and Physical Domains, and
may not fit neatly into any of the levels of abstraction
defined earlier. For example, during the control step
partitioning task of Figure 6, the design exists at multi-
ple levels of description (both the Algorithmic and
Functional Block Levels), but after the task is com-
pleted, the design exists at a single level, although it
combines domains from two of the levels defined in
Section 3 (ie., it has a Functional Block Level
behavioral component, but does not yet have a struc-
tural or physical component at that level). At either
time, the design is still represented by one or more
components from each of the three domains, although

1t does not fit neatly into any of the levels defined ear-
lier.

6. Comparison to Other Work

Other researchers have ideas similar to ours This
section describes some of that work.

6.1. Gajski and Kuhn

Gajski and Kuhn [1] have developed a tripartite
representation of design called a Y-chart, on which our
axial view of domains of description (Figure 1) is
based Their Functional Representation, Structural
Representation, and Geometrical Representation roughly
correspond to our Behavioral Domain, Structural
Domain, and Physical Domain, respectively, although
our Physical Domain also includes non-geometrical
information as well (e.g., actual area and power con-
sumption).

A major addition to their work is our definition of a
standard set of levels of abstraction, defined 1n terms
of the domains of description. Other additions include
our views of non-isomorphic, hierarchical decomposi-
tion, some of our views of design synthesis, static and
dynamic components in each domain, and description
and constraint components 1n each domain.

8.2. USC Expert Synthesis System

Currently under construction at the University of
Southern California, the Expert Synthesis System
(USC-ESS) 2] uses a data structure called the Design
Data Structure (DDS) [3 to represent the design. This
data structure was developed to provide a common,
uniform representation for a set of DA tools (the ESS
system), and was developed to provide a set of mutu-
ally orthogonal subspaces. They use the analogy of an
architect’s orthographic projection of the top, front,
and side views of an object to derive these subspaces,
or views, of the design such that changing a component
of one subspace has a minimal effect on the other sub-
spaces. For example, changing the physical partition-
ing of a design (e.g., moving components from one
chip to another) has a minimal effect on the other sub-
spaces

The four subspaces used in the DDS are the data
flow behavior subspace, the structural subspace, the
physical subspace, and the timing and control sub-
space. Taken together, the data flow behavior subspace
and the tirning and control subspace correspond roughly
to our Behavioral Domain. The data flow behavior
subspace represents functional definitions and data
dependencies between values as a data flow graph.
The timing and control subspace, also called the
sequencing subspace, represents the ordering of
events, the conditional sequencing of events and the
time between events. The third subspace, the struc-
tural subspace, represents the electrical topology of the
design, and is similar to our Structural Domain. Like-
wise, the physical subspace 1s similar to our Physical

Presented at the 22nd ACM IEEE Design Automation Con ference

Domain, encompassing both geometrical and purely
physical information (e.g., power consumption).

In some ways, our work is closer to this work than
that of Gajski and Kuhn, as both our representation
and the DDS have hierarchical, non-isomorphic
domains. IHowever, there are also some major differ-
ences, the most basic being that our work was
developed as an model of design representation and syn-
thesis, whereas the work at USC was developed as a
destgn data structure. Thus, we have a standard set of
levels of abstraction that are consistent across all
domains, and we have separated all three of the
domains into a static and a dynamic component, and
into a description and a constraint component.

7. Conclusion

We feel that a better understanding of design
representation and its relationship to the synthesis pro-
cess 1s needed, and we are trying to develop better
models to fulfill that need. As designs become
increasingly complex, it will no longer be possible to
represent a design with one all-encompassing language
Rather, it will become necessary to divide the design
description into large, separate domains of description
that can be coordinated to represent the entire design.
This paper has described such a model of design
representation; 1t uses three coordinated, hierarchical,
non-isomorphic domains of description, each of which
contains multiple levels of abstraction. Furthermore,
since synthesis tools are becoming more important, we
have shown how this model can be used as a model of
design synthesis, representing the task of design syn-
thesis as a translation between domains and levels

References

f11 D. Gajski and R. Kuhn,
Guest Editors’ Introduction. New VLSI Tools,
Computer 16(12):11-14, December, 1983

[2] D.Knapp, J. Granacki, and A. Parker,
An Ezpert Synthesis System,
Proc. ofInt. Conf on CAD, pages 164-165,
[EEE, Santa Clara, Calif., September, 1983.

[3] D.Knapp and A. Parker,
A Data Structure for VLSI Synthesis and
Veri fication,
Report DISC/83-6a, Dept. of EE-Systems,
USC, March, 1984

4] C. Mead and L. Conway,
Introduction to VLSI Systems,
Addison-Wesley, 1980

[5] D. Parnas,
On the Criteria To Be Used in Decomposing
Systems into Modules,
CACM, 15(12):1053-1058, December, 1972.

[6] D. Thomas, C. Hitchcock, T. Kowalski,
J. Rajan, and R Walker,
Automatic Data Path Synthests,
Computer, 16(12):59-70, December, 1983,

The authors can be reached at:
Dept. of Elect. and Computer Engineering
Carnegie-Mellon University,
Pittsburgh, PA| 15213,
or via the ARPANET as
Bob. Walker@ cmu-ee- faraday.arpa and
Don. Thomas@ cmu-ee- faraday. arpa

Presented at the 22nd ACM IEEE Design Automation Con ference

