
unedited draft of paper to appear in the Summer 1995 IEEE Design & Test

*

A B

*

C D

+

*

E F

+

1 2 4

3

5

G

control step 1

control step 2

control step 3

Figure 1: Schedule for the Expression
“G=AB+CD+EF”

High-Level Synthesis:

Introduction to the Scheduling Problem

Robert A. Walker† ‡ and Samit Chaudhuri‡

Computer Science Department†
Electrical, Computer, and Systems Engineering Department‡

Rensselaer Polytechnic Institute
Troy, NY 12180

ABSTRACT

The scheduling problem — one of the central tasks in
high-level synthesis — is the problem of determining the
order in which the operations in the behavioral description
will execute. This tutorial introduces the scheduling
problem, and describes four scheduling algorithms
commonly used today to solve those problems.

1. INTRODUCTION

High-level synthesis (sometimes called behavioral
synthesis) is the design task of mapping an abstract
behavioral description of a digital system onto a register-
transfer level design to implement that behavior.
Introduced in the first article in this series [Gajski94], high
level synthesis has the potential to greatly improve both
designer productivity and design space exploration.

As defined in that introductory article, the three central
synthesis tasks in a typical high-level synthesis system are
the following:

• scheduling — determining the sequence in which the
operations are executed to produce a control step
schedule, which specifies the operations that execute
in each control step, or state

• allocation — setting aside the appropriate number of
functional units, storage units, and interconnection
units

• binding — assigning operations to functional units,
assigning values to storage units, and interconnecting
those components to form a complete data path

In most high-level synthesis systems, scheduling and
functional unit allocation are performed simultaneously,
followed by the remaining allocation tasks and binding.
This tutorial discusses the scheduling problem, and the
next article in this series will discuss the remaining
allocation problems and the binding problem.

More specifically, this tutorial defines the basic
scheduling problem, and three common variations on that
problem necessary to meet real-world design constraints. It
then describes four scheduling algorithms commonly used
today to solve those problems: three simple constructive
heuristics, and an optimal solution technique based on
Integer Linear Programming (ILP).

2. THE BASIC SCHEDULING PROBLEMS

One of the first steps in a typical high level synthesis
system is to convert the input behavioral description of the
desired digital system, written in a hardware description
language such as VHDL or Verilog, into a control / data
flow graph (cdfg). Operations in the behavioral
description, such as additions and multiplications, are
represented as nodes in the cdfg, and values (inputs to the
expression, temporary results, and the output of the
expression) are represented as edges. In more complex
behaviors, the cdfg can also represent conditional branches,
loops, etc., hence the name “control / data flow graph.”

Consider the arithmetic expression “G=AB+CD+EF”.
This expression might be part of a larger description, for
example, part of a digital signal processor description, but
for purposes of simplicity we will consider only that one
expression here. We can parse this expression to build a
cdfg, shown in Figure 1, which will serve as the internal
representation for a high-level synthesis system. The goal
of scheduling, then, is to determine the order in which
these operations will execute, i.e., to schedule each
operation into an appropriate control step.

2.1. Basic Concepts

Suppose we try to schedule the cdfg of the arithmetic
expression “G=AB+CD+EF”, as shown in Figure 1. If we

2

begin by scheduling operation 1 into control step 1, we can
also schedule operation 2 into that same control step, since
the two operations do not depend on each other in any way.
However, operation 3 cannot be scheduled into control step
1, since it depends upon the results of operation 1 and
operation 2, which are not available until the end of control
step 1. Thus operation 3 must be delayed until control
step 2 or later (let’s assume that it’s scheduled into control
step 2). As we did with operation 2, we can schedule
operation 4 into control step 1 as well, since it does not
depend upon the result of either operation 1 or 2. Finally,
operation 5 must be scheduled into control step 3 or later,
since it depends upon the result of operation 3.

Let O be the set of all operations in the cdfg. If the
result of operation oi ∈ O is used by operation oj ∈ O,
then operation oi must finish its execution before
operation oj can begin, and we say that there is a data
dependency between the two operations. We would also
say that oi is an immediate predecessor of oj and that oj
is an immediate successor of oi. This data dependency is
represented during the synthesis process as a precedence
constraint between the two operations, which must be
satisfied by the control step schedule.

In generating the control step schedule for a particular
cdfg, we have two options — we may be satisfied with
generating a feasible schedule (any “legal” schedule), or
we may want to find a schedule that is optimal with respect
to some objective function (for example, the schedule with
the smallest functional unit area). In this latter case, we
need to know the type of the functional unit allocated to
each operation, so that we can compute the overall
functional unit area as the sum of the areas of the
maximum number of functional units of each type used in
any one control step.

For a given functional unit in a particular module
library, the type of the functional unit indicates its
functionality (e.g., addition, multiplication, or addition /
multiplication). Let K be the set of types that are
available, and let ak and mk be the area and number of
functional units, respectively, of type k ∈ K.

For a given operation, the type of the operation is
determined by a type function τ : O → K, where τ(i) =
k means that operation oi ∈ O is executed on a functional
unit of type k ∈ K. The problem of determining this type
function, and thus the type of the functional unit on which
each operation will execute, is called the type mapping
problem. Since we need to know the execution delay of
each operation to solve the scheduling problem, this type
mapping problem must be solved before (or
simultaneously with) the scheduling problem. In this
tutorial, we will assume that the type mapping for each
operation is known prior to scheduling.

We can now use these concepts to define the
Unconstrained Scheduling (UCS) problem — the basic
scheduling problem in high-level synthesis:

Unconstrained Scheduling (UCS)

Given: a set O of operations; a set K of functional
unit types; a type function τ : O → K; and a partial order
on O determined by the precedence constraints.

Find: a feasible (or optimal) schedule for O that obeys
the precedence constraints.

2.2. Time-Constrained Scheduling (TCS)

Although the UCS problem defined above captures the
basic elements of the scheduling problem in high-level
synthesis, in practice it may be necessary to add additional
constraints to meet particular design goals. For example,
we could limit the execution time of the design by
constraining the overall length of the control step schedule
— we refer to this process as adding a time constraint on
the overall schedule length (i.e., a deadline), which must
be satisfied by the control step schedule.

Adding this time constraint on the overall length of the
schedule to the UCS problem, we can define the Time-
Constrained Scheduling (TCS) problem as follows:

Time-Constrained Scheduling (TCS)

Given: a set O of operations; a set K of functional
unit types; a type function τ : O → K; a partial order on
O determined by the precedence constraints; and a time
constraint (deadline) D on the overall schedule length.

Find: a feasible (or optimal) schedule for O that obeys
the precedence constraints and that meets the deadline D.

Investigating further, we can see by examining Figure 1
that if we do impose an overall time constraint on the
schedule, some operations may be forced into specific
control steps. For example, if we constrain the schedule to
a total length of three control steps, operations 1 and 2
must be scheduled into control step 1, operation 3 must be
scheduled into control step 2, and operation 5 must be
scheduled into control step 3. Since we have no freedom in
scheduling these operations (without violating the time
constraint), we say that they are on the critical path.

In general, we say that there is a continuous range Si of
control steps, called the schedule interval, over which an
operation oi can be scheduled. The length of this interval
is the mobility of the operation. In Figure 1, the schedule
interval for operations 1 and 2 is [1,1] and their mobility is
1; the schedule interval for operation 3 is [2,2] and its
mobility is also 1; and the schedule interval for operation 4
is [1,2] and its mobility is 2. As we will see later, this
information can be of great benefit during the scheduling
process.

2.3. Resource-Constrained Scheduling (RCS)

Another set of constraints commonly added to the UCS
problem, reflecting the design goal of limiting the chip
area, are constraints on the number of functional units of
each type. For example, 2 multipliers may fit within the
available chip area, while 8 multipliers may not — in this
case it may be necessary to impose a resource (functional
unit) constraint on the design, limiting the number of
multipliers to 2.

Consider the effect of adding resource constraints to the
example of Figure 1. The schedule shown in that figure
was generated without resource constraints, and requires at
least 3 multipliers and 1 adder. However, if we constrain
the number of multipliers to 1, we might obtain the
schedule shown in Figure 2, which would require
substantially less functional unit area. (Notice that
although this schedule uses two less functional units, the
schedule length has increased by one, illustrating the
classical serial-parallel tradeoff that often occurs in

3

scheduling problems — trading execution time for the
number of resources.)

*

A B

*

C D

+ *

E F

+

1

2

43

5

G

control step 1

control step 2

control step 3

control step 4

Figure 2: Schedule with a Resource
Constraint of 1 Multiplier

Adding these resource constraints to the UCS problem,
we can define the Resource-Constrained Scheduling
(RCS) problem as follows:

Resource-Constrained Scheduling (RCS)

Given: a set O of operations; a set K of functional
unit types; a type function τ : O → K; resource
constraints mk, 1 ≤ k ≤ K for each functional unit type;
and a partial order on O determined by the precedence
constraints.

Find: a feasible (or optimal) schedule for O that obeys
the precedence constraints and that meets the resource
constraints for each functional unit type.

Note that we can impose a separate resource constraint on
each functional unit type.

2.4. Time- and Resource-Constrained
Scheduling (TRCS)

Finally, we can combine the TCS and RCS problems to
define the Time- and Resource-Constrained Scheduling
(TRCS) problem, constraining both the overall schedule
length and the number of functional units of each type:

Time- and Resource-Constrained Scheduling
(TRCS)

Given: a set O of operations; a set K of functional
unit types; a type function τ : O → K; resource
constraints mk, 1 ≤ k ≤ K for each functional unit type; a
partial order on O determined by the precedence
constraints; and a time constraint (deadline) D on the
overall schedule length.

Find: a feasible (or optimal) schedule for O that obeys
the precedence constraints, meets the deadline D, and
meets the resource constraints for each functional unit
type.

3. ADVANCED SCHEDULING TOPICS

In order to provide a concise introduction to the various
scheduling problems, the previous section made a number

of overly simplistic assumptions. This section will briefly
introduce several advanced topics, all of which must be
considered by any practical scheduling algorithm.

3.1. Chaining and Multicycling

In the previous section, the assumption was made that
each operation type requires the same amount of time to
execute, and that the control step length (i.e., the clock
period) is equal to that execution time. In practice,
different operation types may have different execution times
(i.e., the functional unit types onto which each is mapped
may have different propagation delays), and an overly
restrictive scheduling model coupled with a poor choice for
the control step length can result in poorly-utilized
functional units and an overly long schedule.

Consider the cdfg of Figure 3a, where the multiplication
and addition operations are mapped onto a multiplier and
adder with a 100ns and 50ns propagation delay, respectively
(for simplicity, we will assume that these functional unit
propagation delays include any necessary register setup
times). If the control step length is set to the 100ns (the
longest of the two propagation delays), and each operation
is scheduled into exactly one control step, the overall
length of the schedule will be 200ns, and the multiplier
will be utilized only half of the time.

no chaining or
multicycling

(a)

+

*

+

100ns

200ns

two chained additions(b)

+
chained

operations*
+

100ns

a multicycle multiplication(c)

+
multicycle
operation

*
+

100ns

50ns

Figure 3: Chained and Multicycle Operations

However, the multiplier utilization can be increased, and
the schedule length can be decreased, by packing the two
additions into a single control step, as shown in Figure 3b.
We refer to these two additions as chained operations, and
implement them at the register-transfer level by connecting
the output of the first adder directly to the input of the
second adder (i.e., without the intervening register that
would otherwise latch the result of the first adder at the
control step boundary). In this example, chaining can
increase the multiplier utilization and decrease the length of
the schedule to 100ns, but at the cost of an additional adder.

Another alternative to improve the schedule of Figure 3a
is to set the clock length to 50ns (the shortest of the two
propagation delays), and to execute the multiplication over
two control steps, as shown in Figure 3c. We refer to an
operation such as this multiplication as a multicycle
operation — it will have to execute continuously
throughout its entire execution time, and its input values

4

for each operation oi

if oi has no immediate predecessors

cstep(oi) = 1 /* cstep(oi) indicates control step
into which operation oi is scheduled */

else

cstep(oi) = maximum cstep of any of oi’s
immediate predecessors + 1

Figure 4: As-Soon-As-Possible (ASAP) Scheduling

must be latched throughout that period as well. In this
example, multicycling can decrease the length of the
schedule to 100ns, just like chaining, but without the cost
of another adder; however, multicycling does use twice as
many control steps as chaining, which may result in a
larger controller.

3.2. Scheduling in the Presence of Control
Constructs

The basic scheduling problems presented in the last
section were all defined for a single basic block — one
section of straight-line code with only one entry point and
one exit point. Since most hardware description languages
support conditionals, loops, and other control constructs,
those constructs must be considered during the scheduling
process. When scheduling conditional branches, the
scheduler should exploit any potential parallelism by
sharing functional units between mutually exclusive
branches (e.g., the same adder can be used in both the
“then” and “else” clauses of an “if” statement). When
scheduling loops, the scheduler should exploit any
potential parallelism by loop folding — overlapping the
loop executions in a pipelined fashion.

3.3. Scheduling with Timing Constraints

The basic scheduling problems presented in the last
section capture a variety of constraints on the execution
time of the schedule — the length of the schedule, the
schedule intervals of the operations, and the precedence
constraints between them. However, few digital systems
work in isolation, so there may also be a need to specify
more detailed timing constraints on certain operations:
minimum timing constraints, which specify that one
operation must be executed at least a specified amount of
time after another operation, and maximum timing
constraints, which specify that one operation must be
executed no more than a specified amount of time after
another operation. Most schedulers handle these timing
constraints by adding additional constraint edges to the
cdfg, and then treating those additional edges in much the
same manner as other constraints.

4. SOME COMMON SCHEDULING
ALGORITHMS

This tutorial has defined the four basic scheduling
problems in high-level synthesis. To solve those
scheduling problems, both heuristic algorithms, which
find feasible (possibly suboptimal) solutions, and exact
algorithms, which find optimal solutions, have been used.

This section will highlight four scheduling algorithms
commonly used today by high-level synthesis systems to
solve those problems.

The first three scheduling algorithms described here
(ASAP / ALAP scheduling, list scheduling, and force-
directed scheduling) are constructive heuristic algorithms,
which iteratively select and schedule one operation at a
time into an appropriate control step. Since these greedy
strategies make a series of local decisions, selecting at each
point the single “best” operation / control step pairing
without backtracking or look-ahead, they may miss the
globally optimal solution. However, they do produce
results quickly, and those results may be sufficiently close
to optimal to be acceptable in practice.

The fourth scheduling algorithm considered here, based
on solving an Integer Linear Programming (ILP)
formulation, is an exact algorithm, guaranteed to find the
globally optimal schedule, although at the cost of more
processing time. In contrast to the first three algorithms,
which schedule one operation at a time, this algorithm
produces a schedule for all operations simultaneously.

4.1. ASAP / ALAP Scheduling — A
Constructive Heuristic for the UCS Problem

As-Soon-As-Possible (ASAP) scheduling and As-
Late-As-Possible (ALAP) scheduling are the two
simplest scheduling algorithms used in high-level
synthesis. ASAP scheduling (see Figure 4) schedules each
operation, one at a time, into the earliest possible control
step. ALAP scheduling is similar, but schedules each
operation into the latest possible control step.

Although limited by their greedy nature, as discussed
above, these algorithms can quickly solve the UCS
problem. However, to find acceptable solutions to the
RCS and TCS problems, we need more sophisticated
algorithms.

4.2. List Scheduling — A Constructive Heuristic
for the RCS Problem

A common choice for solving the RCS problem is list
scheduling [Pangrle87] (see Figure 5), a venerable
algorithm based on work done over 30 years ago by Hu
[Hu61], and long used in project management and
microcode compaction. Unlike ASAP / ALAP scheduling,
which processes each operation in a fixed order, list
scheduling processes each control step sequentially,
choosing in each iteration the “best” operation from all
appropriate operations to place into the control step,
subject to resource constraints.

During the scheduling process, list scheduling uses a
ready list (hence the name) to keep track of data-ready
operations — those unscheduled operations that can be
scheduled into the current control step without violating
the precedence constraints (i.e., those operations whose
immediate predecessors have been scheduled into earlier
control steps). As long as there are data-ready operations
that meet the resource constraints in the ready list,
operations are chosen from that list and scheduled into the
current control step.

To make the choice of which operation in the ready list
to schedule, those operations are sorted according to some
priority function, and the operation with the highest
priority is always chosen to be scheduled into the current

5

control step. One common priority function is based on
mobility, which was defined earlier as the length of an
operation’s schedule interval. Operations with smaller
mobility are given higher priority, since there are fewer
possible control steps into which those operations can be
scheduled, and since delaying them to a later control step
would more likely increase the overall length of the
schedule; this is especially true for those operations with a
mobility of 1, which are said to be on the critical path.

current-cstep = 0

while there are unscheduled operations

current-cstep = current-cstep + 1

place data-ready operations into the ready list,
evaluate the priority of each operation,
and sort the ready list in order of priority

while there are data-ready operations in the ready
list that meet the resource constraints

choose the highest priority data-ready operation
oi from the ready list

cstep(oi) = current-cstep

Figure 5: List Scheduling

The results of the list scheduling algorithm are clearly
biased by the priority function chosen. Some systems give
higher priority to those operations with lower mobility, as
described above. Others give higher priority to those
operations with more immediate successors, arguing that
scheduling them in the current control step would make the
largest number of operations data-ready, and thereby allow
each operation to be considered as early as possible.
Unfortunately, there is no agreement on which priority
function is the “best”, and the choice often depends on the
structure of the cdfg.

The list scheduling algorithm may also vary in its
treatment of the ready list. As presented in Figure 5, the
ready list is constructed only once per control step, but the
ready list could instead be constructed every time a data-
ready operation is chosen, allowing an operation to be
chosen from a more up-to-date list at the cost of additional
computation. Another variation is to maintain a separate
ready list for each functional unit type k ∈ K, thus making
it easier to consider only those operations that meet the
resource constraints.

Although less efficient computationally than ASAP
scheduling, due to its more global selection of the next
operation to schedule and to its simple yet intuitive
priority function, list scheduling remains a common choice
for solving the RCS problem.

4.3. Force-Directed Scheduling — A
Constructive Heuristic for the TCS Problem

Force-directed scheduling (see Figure 8), originally
developed as part of Carleton University’s HAL system
[Paulin89], is a popular constructive algorithm that solves
the TCS problem by uniformly distributing the operations
of each type across a time-constrained schedule. Balancing
the operations in this manner results in higher functional

unit utilization, and thus minimizes the number of
functional units of each type.

Since force-directed scheduling solves the TCS problem,
the first step in the algorithm must be to determine the
schedule length (the overall time constraint). A good
approximation of the schedule length can be determined by
constructing an ASAP schedule, and measuring the length
of that schedule. Force-directed scheduling also considers
the schedule interval of each operation, so an ALAP
schedule is constructed as well, and the two schedules are
used to determine the schedule intervals.

Now consider a particular operation oi, that can
theoretically be scheduled into any control step s in its
schedule interval Si. If we denote its ASAP control step as
ASAPi and its ALAP control step as ALAPi, and we
assume that it has a uniform probability of being scheduled
into any control step in the range [ASAPi, ALAPi], then
the probability Pi,j of scheduling operation oi into a
particular control step sj ∈ Si is:

Pi, j = 1
ALAPi − ASAPi + 1

These probabilities are illustrated on the left side of
Figure 7, where the width of each operation box represents
the probability of scheduling the corresponding operation
in the data flow graph in Figure 6 into that control step.
Operations 1, 2, 5, 7, and 8 each have a mobility of 1, so
have a probability of 1 of being scheduled into a particular
control step; in Figure 7, each is shown wholly within that
control step, represented by a box of width 1. Operation 3,
however, has a schedule interval of [1,2], and thus a
probability of 0.5 of being scheduled into either control
step in that range; in Figure 7, operation 3 is represented
by a box of width 0.5 spanning control steps 1 and 2.
Operation 6 is similar, and operations 4, 9, 10, and 11 each
have a probability of 0.33 of being scheduled into a
particular control step in their schedule interval.

Given these probabilities, a histogram can be
constructed for each functional unit type k, showing the
expected cost of performing all operations of that type in
each control step. For a functional unit type k, the
expected functional unit cost in control step sj ∈ Si is:

FCostk, j = ck Pi, j
i∈Ik

∑

where ck is the cost of a functional unit of type k and Ik is
the index set of all operations of type k.

The right side of Figure 7 shows the histogram for
multiplication operations, assuming a unit multiplier cost.
This histogram is constructed as follows:

FCostmult,1 = P1,1 + P2,1 + P3,1 + P4,1 + P5,1 + P6,1
= 1 + 1 + 0.5 + 0.33 + 0 + 0
= 2.83

FCostmult,2 = P1,2 + P2,2 + P3,2 + P4,2 + P5,2 + P6,2
= 0 + 0 + 0.5 + 0.33 + 1 + 0.5
= 2.33

FCostmult,3 = 0 + 0 + 0 + 0.33 + 0 + 0.5
= 0.83

FCostmult,4 = 0

6

The expected number mk of functional units of type
k can now be computed as the maximum number of
functional units of that type in any control step:

mk = max
j∈S

(FCostk, j)










where S is the index set of all control steps. Thus this
example is expected to require 2.83 = 3 multipliers.

*

u dz

*

3 z

*

3 y

—

1 2 3

5

7

yl

control step 1

control step 2

control step 3

—

8

* *
6

u

dz

*

u dz

4
y

+

ul ctrl

z dz

10
a

<

+

control step 4

9 11

Figure 6: Data Flow Graph and ASAP Schedule for
the Differential Equation (DiffEq) Example

[Paulin89]

* *

*

–

–

*

*

*

+

+

<

1 2

5

7

8

3

6 4

9

10

11

2.83

2.33

0.83

0.00

Figure 7: Initial Schedule Intervals and
Multiplication Histogram

The goal of force-directed scheduling, as stated
previously, is to minimize the number of functional units
of each type by uniformly distributing the operations of
that type across the schedule (i.e., to balance the
histogram). Consider the effect of scheduling operation 3
into either control step 1 or 2. If operation 3 is scheduled
into control step 1, the maximum expected multiplier cost
will be 3.33, and therefore the design will require 4
multipliers. However, if operation 3 is scheduled into
control step 2 (changing operation 6’s schedule interval to
[3,3]), the maximum expected multiplier cost will be 2.33,
and the design will require only 3 multipliers. Of these
two choices, the latter would be preferable, as it tends to
reduce the expected multiplier cost and more uniformly
distribute the multiplications across the schedule.

construct an ASAP and an ALAP schedule,
determine the schedule length, and
compute the schedule interval of each operation

construct a histogram for each operation type k

while there are unscheduled operations

∆Cbest = ∞
for each operation oi

for each cstep sj ∈ Si

compute increase in cost ∆Ci,j if operation oi is
scheduled into cstep sj

if ∆Ci,j < ∆Cbest

∆Cbest = ∆Ci,j

bestop = i; beststep = j

cstep(bestop) = beststep

update histograms

Figure 8: Force-Directed Scheduling

Force-directed scheduling iteratively builds a control step
schedule, keeping the schedule balanced as follows. First,
the initial histograms are created. Then the expected
functional unit cost of scheduling each unscheduled

operation into each control step in its schedule interval is
computed, and the operation / control step scheduling that
results in the smallest increase (or largest decrease) in cost
is made. The histograms are then updated, and the process
continues until there are no more unscheduled operations.

In force-directed scheduling, the “increase” in expected
functional unit cost that will result if an operation is
assigned to a particular control step is computed as the sum
of a set of forces (hence the name). For an operation
oi with schedule interval Si, the direct force of its being
scheduled into control step sj ∈ Si is:

Forcei,k, j = FCostk, j −
FCostk,s

ALAPi − ASAPi + 1
s=ASAPi

ALAPi

∑

In other words, for a particular operation (and therefore a
particular functional unit type) the direct force is the
difference between the expected functional unit cost in that
control step and the average expected functional unit cost
over that operation’s schedule interval.

Since scheduling an operation into a particular control
step may affect the schedule intervals of other operations
(e.g., operation 6 as described above), those “indirect” costs
must be considered as well. Thus the total force associated
with an operation being scheduled into a particular control
step must be computed as the sum of: (1) its direct force,
and (2) the indirect force on any other operation whose
schedule interval is affected by that scheduling.

For example, the total force associated with scheduling
operation 3 in our example into control step 1 (see Figure
7) is only that direct force, since no other schedule intervals
are affected:

Total-Force3,mult,1

= Force3,mult,1

= 2.83 – (2.83+2.33)/2 = +0.25

7

1 2 3 4 5

1

2

3

o
p

er
at

o
r

control step

+

A B

+

+

1

2

3

C

|V | = 12

Assignment
Constraint

Precedence
Clique

|V | ≤ 2 add,3

Resource
Constraint

precedence
edge

assignment
edge

|V | = 11

Assignment
Constraint

|V | = 13

Assignment
Constraint

|V | ≤ 2 add,5

Resource
Constraint

|V | ≤ 2 add,1

Resource
Constraint

Precedence
Clique

V
2

Figure 9: A CDFG and Its Constraint Graph,
Assuming a Schedule of Length 5,

and a Resource Constraint of 2 Adders

However, the total force associated with scheduling
operation 3 into control step 2 is that direct force plus the
indirect force of scheduling operation 6 into control step 3:

Total-Force3,mult,2

= Force3,mult,2 + Force6,mult,3

= 2.33 – (2.83+2.33)/2 + 0.83 – (2.33+0.83)/2

= –1.0

Given these two choices, the algorithm would choose the
operation / control step scheduling that results in the
largest decrease in cost (force). In this example, it would
schedule operation 3 into control step 2, as we conjectured
earlier.

Although less efficient computationally than either
ASAP scheduling or list scheduling, due to its global
selection of the next operation to schedule and to its
effectiveness in uniformly distributing the operations
across the schedule, force-directed scheduling is a common
choice for solving the TCS problem.

4.4. Integer Linear Programming (ILP)
Formulations

Mathematical programming formulations, among them
Integer Linear Programming (ILP), have been used to
solve a wide range of problems in high-level synthesis,
beginning with Hafer’s early scheduling formulation
[Hafer83]. This section introduces an ILP formulation for
optimally solving the TCS, RCS, and TRCS problems.

The biggest advantage of these formulations is the
quality of the solution — unlike the constructive heuristics
described earlier, a commercial ILP solver is guaranteed to
find an optimal schedule from these formulations.
Unfortunately, this guarantee of quality comes at a price —
ILPs can not, in general, be solved in polynomial time.
Thus the tradeoff is between the a guarantee of solution
quality and a guarantee of quickly finding a solution.
Fortunately, however, a carefully-designed ILP formulation
can produce results in acceptable time for small and
medium-sized problems, and ongoing research on bounding
techniques may soon allow larger problems to be solved as
well.

Integer Linear Programming (ILP) problems
[Nemhauser88] are those problems that either maximize or
minimize some objective function of many variables,
subject to: (1) linear equality and inequality constraints,
and (2) integrality restrictions on all of the variables. It is
also common to use linear objective functions, and to
require that the variables be non-negative. An integer
linear programming (ILP) formulation is written as:

ZIP = min cT x x ∈PF ; x integer{ }
where

PF = Ax ≤ b, x ∈Å+

n{ }
where Å+

n is the set of non-negative real (n × 1) vectors,
c is a (n × 1) real vector, b is a (m × 1) integer vector, and
A is a (m × n) integer matrix.

The Set of Feasible Schedules

Consider the set of nodes V = (i,s) i ∈ I;s ∈Si{ } as
illustrated in Figure 9, where a node (i, s) corresponds to
operation oi being scheduled in control step s, I is the
index set of all operations, and Si is the schedule interval
over which an operation oi can be scheduled (see Section
1.2).

Each operation oi can conceivably be scheduled anywhere
in its schedule interval Si, so corresponding to each
operation oi is a set of nodes Vi = (i,s) s ∈Si{ }. For
example, in Figure 9, assuming a deadline of 5 control
steps, operation 2 can conceivably be scheduled into either
control step 2, 3, or 4, as shown by the horizontal shaded
oval labeled “V2”.

Furthermore, for each control step s, each functional unit
type k corresponds to a set of nodes
Vk,s = (i,s) s ∈Si ;τ (i) = k{ }, which can be mapped onto
that functional unit type during that control step. For
example, in Figure 9, assuming all three operations are
mapped onto adders, operations 1, 2, and 3 might all be
scheduled onto adders during control step 3, as shown by
the vertical shaded oval in the third column.

Each feasible schedule contains exactly one node from
each set of nodes Vi, satisfies all the precedence constraints
between operations, and uses no more than the available
number of functional units of each type. Clearly, in order
to find a feasible schedule, we need some way to determine
which xi,s variables are 1 and which are 0. We will
determine these values by specifying a set of equality and
inequality constraints on the scheduling problem, and from
there construct an integer linear programming (ILP)
formulation of the problem, which will give us an optimal
solution to the problem for a specified objective function.

The Constraints on the Scheduling Problem

To characterize the constraints on the scheduling
problem, we need to construct a constraint graph Gc as
follows (see Figure 9). The nodes of Gc are the nodes
V that we have already seen.

We can now define assignment constraints on the
scheduling problem, which will ensure that a feasible
schedule has exactly one node per operation:

xv = 1
v∈Vi

∑ , ∀i ∈ I

8

In Figure 9, the horizontal shaded oval labeled “V2”
represents the assignment constraint for operation 2,
constraining it to be scheduled into exactly one control step
in the range [2, 4].

Earlier in this tutorial we defined precedence constraints
between two operators; a precedence clique Cp is defined
as a clique1 in Gc that has at least one precedence edge
(constraint) connecting two of its nodes. We can use this
concept to define precedence constraints on the
scheduling problem, which will prevent two nodes that are
in precedence conflict from being in the same feasible
schedule:

xv ≤ 1
v∈Cp

∑ , ∀Cp ∈ I

In Figure 9, the shaded vertical oval in column 3 represents
a precedence clique stating that if either operation 1, 2, or 3
is scheduled into control step 3, the two remaining
operations can not be scheduled into that control step as
well.

Finally, we can define resource constraints on the
scheduling problem, which will ensure that in each control
step the number of operations of each type do not exceed
the available number of functional units of that type:

xv ≤ mk
v∈k,s
∑ , s ∈S, ∀k

In Figure 9, the resource constraint at the bottom of
column 3 states that no more than two addition operations
can be scheduled into control step 3.

We can represent these constraints succinctly in the
following form:

Max = 1; Mpx ≤ 1; Mrx ≤ m

where Ma is the coefficient matrix due to the assignment
constraints, Mp is the coefficient matrix due to the
precedence constraints, and Mr is the coefficient matrix due
to the resource constraints.

The ILP Formulation

We can now use these constraints to construct ILP
formulations that represent the various scheduling
problems. Formulations of the TCS and RCS problems
are shown below, and the formulation of the TRCS
problem can easily be constructed by combining those two
formulations. Given these formulations, a commercial ILP
solver can be used to find an optimal solution.

For the TCS problem, we can minimize a function of
the number of functional units of each type:

ZIP = min akmk
k∈K
∑ x ∈PF (t); x integer













PF (t) = x ∈Å+

V Max = 1; Mpx ≤ 1; Mrx ≤ m{ }

1A clique is a fully-connected subgraph — a subgraph where each
node is connected to all other nodes of the subgraph.

where, for functional units of type k ∈ K, ak is a weight
(usually based on area), and mk is the number of
functional units of that type.

For the RCS problem, we can minimize the number of
control steps by introducing a dummy operation od, adding
edges to ensure that od is scheduled after all other
operations, and scheduling od as early as possible:

ZIP = min s xd,s
s∈Sd

∑ x ∈PF (t); x integer












where PF(t) is defined above, and Sd is the schedule
interval of operation od.

Rensselaer Polytechnic Institute’s RPI-ILP system
[Chaudhuri94] uses the formulation described in this
section to solve the TRCS directly, and the TCS and RCS
problems indirectly, quickly producing guaranteed optimal
solutions to each. Similar formulations are used in Tsing
Hua University’s THEDA System [Hwang91] and the
University of Waterloo’s OASIC System [Gebotys92].

5. SUMMARY

This paper has attempted to define the more common
variations on the scheduling problem in high-level
synthesis, and to describe several scheduling algorithms
commonly used today in high-level synthesis. The
scheduling problem will undoubtedly remain an area of
research for years to come, as we begin to explore various
related problems now that we have an understanding of the
basic scheduling problem. In the future, we will continue
to try to better understand the relationship between
scheduling, allocation, and binding, and will begin to
explore the relationship between scheduling and clock
determination, type mapping, and time and resource
bounding.

REFERENCES

[Chaudhuri94] Samit Chaudhuri and Robert A. Walker,
“Analyzing and Exploiting the Structure of
the Constraints in the ILP Approach to the
Scheduling Problem”, IEEE Trans. on VLSI
Systems, pages 456–471, December 1994.

[Gajski94] Daniel D. Gajski and Loganath
Ramachandran, “Introduction to High-Level
Synthesis”, IEEE Design & Test, pages 44–
54, Winter 1994.

[Gebotys92] Catherine H. Gebotys, “Optimal Scheduling
and Allocation of Embedded VLSI Chips”,
Proc. of the 29th DAC, pages 116–119,
June 1992.

[Hafer83] Louis J. Hafer and Alice C. Parker, “A
Formal Method for the Specification,
Analysis, and Design of Register-Transfer
Level Digital Logic”, IEEE Trans. on CAD,
pages 4–18, January 1983.

[Hu61] T.C. Hu, “Parallel Sequencing and
Assembly Line Problems”, Operations
Research, pages 841–848, Volume 9,
1961.

[Hwang91] Cheng-Tsung Hwang, Jiahn-Hurng Lee, and
Yu-Chin Hsu, “A Formal Approach to the
Scheduling Problem in High-Level

9

Synthesis”, IEEE Trans. on CAD, pages
464–475, April 1991.

[Nemhauser88] G.L. Nemhauser and L.A. Wolsey, Integer
and Combinatorial Optimization, Wiley,
1988.

[Pangrle87] Barry Michael Pangrle and Daniel D.
Gajski, “Design Tools for Intelligent
Silicon Compilation”, IEEE Trans. on
CAD, pages 1098–1112, November 1987.

[Paulin89] Pierre G. Paulin and John P. Knight,
“Algorithms for High-Level Synthesis”,
IEEE Design and Test, pages 18–31,
December 1989.

