
Bounding Algorithms for Design Space Exploration�

Samit Chaudhuri Robert A. Walker
Magma Design Automation Kent State University

Palo Alto, CA 94303 Kent, OH 44242

Abstract

This paper describes several new algorithms for computing
lower bounds on the length of the schedule and the number
of functional units in high-level synthesis.

1 Introduction

A high-level synthesis system can explore the design space,
finding the optimal tradeoff curve between area and time
(schedule length, or latency) as illustrated in Figure 1. Even
when the scheduling problem is combined with clock length
determination and module selection, this exploration can be
done efficiently [2]. One key to efficient exploration is the
use of fast algorithms to compute lower and upper bounds
on the optimal curve. As Figure 1 shows, when those bounds
are the same, they represent the optimal solution. For the re-
maining points, more computationally intensive algorithms
are required.

1.1 Basic Notation
Given a data flow graph (DFG), let the set of all operations
be denoted as foi j i 2 Ig, where I is the index set of all
operations. Let asapi (resp. alapi) denote the as-soon-as-
possible (resp. as-late-as-possible) control step (cstep) into
which operation oi can start execution. The cstep interval
Si = [asapi; alapi] is then referred to as the schedule inter-
val of operation oi. Let the number of functional units (FUs)
of type k be denoted as mk, and the area as ak, where k can
be any type from a set of types K. Let the set Ik denote the
index set of operations that are executed on a type-k FU.

2 Lower-Bounding Problems

This paper examines two lower-bounding problems. The
Schedule Length Lower-Bounding Problem (SL-LB) is that
of computing a lower bound on the minimum number of
csteps required to schedule a DFG, while using no more than
a specified number of FUs. The Functional Unit Lower-
Bounding Problem (FU-LB) is that of computing lower
bounds on the minimum number of FUs, while using no
more than a specified number of csteps.

2.1 Formulation of Lower-Bounding Problems
In general, a lower-bounding problem can be viewed as an
optimization problem, one that minimizes some objective
function while satisfying a set of constraints. These con-
straints are obtained by relaxing or dropping some of the
constraints on the original scheduling problem, leading to an
easier problem to solve.

A solution to the scheduling problem satisfies three sets of
constraints: (a) resource constraints, to ensure that no more

�Portions of this work were supported by the National Science Foundation under
Grants MIP-9423953 and MIP-9796085.

Feasible Designs

A
re

a

Schedule Length

Optimal Designs
Upper Bounds

Lower Bounds

Figure 1: The 2-Dimensional Design Space

than mk, k 2 K FUs are used in any cstep, (b) precedence
constraints, to ensure that each operation finishes execution
before all its successors, and (c) interval constraints, to en-
sure that each operation oi is scheduled within its schedule
interval [asapi; alapi]. Taken together, these three sets of
constraints are denoted as C1.

To formulate lower-bounding problems, these constraints
C1 are relaxed in two ways. First, the precedence con-
straints of C1 can be relaxed, forming constraints C2. Then
the multi-cycle operations are broken up into chains of uni-
cycle operations, forming constraints C3. In general, prob-
lems formulated with constraints C2 produce more accurate
bounds than those formulated with constraints C3.

2.2 Lower Bound on Schedule Length
Given a limitmk on the number of FUs of each type k 2 K,
a schedule length lower-bounding (SL-LB) problem can be
formulated as follows. First, the alapi values are computed
for each operation oi, i 2 I , based on a schedule length
equal to the critical path length z of the DFG. Then an ob-
jective function is formulated to minimize a quantity called
max-tardiness, which we denote as y and define as the max-
imum number of csteps that an operation oi is delayed be-
yond alapi. The lower bound c on the schedule length is then
computed as z + y.

2.2.1 Schedule Length Lower-Bounding Problem SL-
LB1

The most common SL-LB problem is the problem of mini-
mizing y subject to constraints C3; we denote this problem
as SL-LB1. Problem SL-LB1 is the same as the well-known
problem of multiprocessor scheduling of independent, unit-
time tasks with integer release times and deadlines, which
can be solved by Jackson’s Earliest Deadline Rule (ED-
Rule) [1]. In high-level synthesis, the ED-Rule has been
used to solve problem SL-LB1 by Rim and Jain [10], and
by Rabaey and Potkonjak [9]. The complexity of this algo-
rithm is O(n logn).

Another technique for solving problem SL-LB1 is based
on a theorem originally given by Fernández and Bussell
in [4, Theorem 2]. In high-level synthesis, this technique has
been used to compute lower bounds on the schedule length

1999 Great Lakes Symposium on VLSI, pp. 234-235



by Sharma and Jain [11], and by Hu et al. [6]. We have
proven in [3] that these bounds are exactly the same as those
obtained by solving problem SL-LB1, so using this theo-
rem is an alternative technique for solving SL-LB1. How-
ever, this technique is slower than the ED-Rule algorithm
(see [10]) because its complexity,O(nz2), is higher than the
ED-Rule since z2 >> logn. Unfortunately, the bounds
produced by solving SL-LB1 are not always as tight as we
might like.

2.2.2 Schedule Lower-Bounding Problem SL-LB2
One approach to finding tighter lower bounds is that of ap-
plying one of the basic SL-LB1 algorithms iteratively, thus
gradually shrinking the schedule interval; we denote these
approaches as problem SL-LB2. Since this new bound is
produced with shorter schedule intervals than the original
SL-LB1 problem, it is often tighter (but never looser) than
the SL-LB1 lower bound. Techniques by Langevin [7], and
by Hu and Carlson [5], fall into this category.

Our algorithm for solving problem SL-LB2 is also itera-
tive, and in each iteration solves one SL-LB1 problem us-
ing Jackson’s ED-Rule. The complexity of this algorithm is
O(n2 logn).

2.2.3 Schedule Lower-Bounding Problem SL-LB4
Although the bounds produced by SL-LB2 are tighter that
SL-LB1 bounds, they can still be less than satisfactory, par-
ticularly for DFGs with multi-cycle operations. This moti-
vates us to solve a relaxation problem based on constraints
C2 instead of constraints C3. To the best of our knowl-
edge, this new problem, denoted as SL-LB4, has not been
explored previously in high-level synthesis.

Our algorithm for solving problem SL-LB4 starts with the
SL-LB1 lower bound c. For each type k 2 K of operations,
it solves a feasibility problem to determine whether or not a
feasible schedule exists, which uses no more than mk FUs
and c csteps, and which satisfies constraints C2. This feasi-
bility problem is solved using the Barriers Algorithm origi-
nally proposed by Simons in [12]. If no such feasible solu-
tion exists, then c is increased and the procedure is repeated.

The complexity of our algorithm is O(mn2 logn), where
m = maxk2K mk; however, if priority queues are im-
plemented on stratified binary trees then the complexity re-
duces to O(mn2 log log n). In practice, this algorithm per-
forms much faster than our SL-LB2 algorithm because the
constant factor is much smaller, since it does not break each
multi-cycle operation into numerous uni-cycle operations.

2.3 Lower Bounds on Functional Units (FUs)
Given a limit c on the schedule length, (where c � criti-
cal path length z), a functional (FU) unit lower-bounding
(FU-LB) problem computes lower bounds on the number of
functional units of type k, k 2 K, needed for any sched-
ule of length = c, and can be formulated as follows. First,
the alapi values are computed for each operation oi, i 2 I ,
based on a schedule length equal to c. Then an objective
function is formulated to minimize the number mk of func-
tional units for each FU-type k 2 K.

2.3.1 FU Lower-Bounding Problem FU-LB1
The most common FU-LB problem is the problem of min-
imizing mk subject to constraints C3; we denote this as

problem FU-LB1. One technique for solving problem FU-
LB1 is based on a theorem originally given by Fernández
and Bussell in [4, Theorem 1]. In high-level synthesis,
this technique has been used by Sharma and Jain [11], by
Ohm et al. [8], and by Hu et al. [6, 5] to compute lower
bounds on the number of FUs. As we proved in [3], the
bounds obtained by this algorithm are exactly the same as
those obtained by solving problem FU-LB1. Rabaey and
Potkonjak [9] also solve problem FU-LB1, although using
a different method that iteratively solves SL-LB1.

Our algorithm for solving problem FU-LB1 first breaks
multi-cycle operations into uni-cycle operations, and then
computes a quantity P k

s;t that indicates the number of type-
k uni-cycle operations whose ASAP and ALAP times are
within the interval [s; t]. Then it computes the lower bound
mk as

mk = max
[s;t]�[1;c]

fdP k
s;t=(t� s+ 1)eg:

We prove in [3] thatmk is an optimal solution of FU-LB1.
The basic concepts behind our algorithm and the theorem
of Fernández and Bussell [4] are analogous, but our algo-
rithm’s complexity,O(n+ c2), is lower than the latter algo-
rithm’s O(nc2).

3 Upper-Bounding Problems

The previous section has discussed a variety of algorithms
for computing lower bounds on the optimal schedule. How-
ever, knowing the upper bounds on the optimal schedule
also helps to restrict the design space, as discussed in Sec-
tion 1. In the interests of space, our upper-bounding algo-
rithms will not be discussed here. For details, see [3].

References
[1] J. Błażewicz. Simple Algorithms for Multiprocessor Scheduling to Meet Dead-

lines. Information Processing Letters, 6(5):162 – 164, Oct. 1977.
[2] S. A. Blythe and R. A. Walker. Efficiently Searching the Optimal Design Space.

In Proc. of the 9th Great Lakes Symposium on VLSI, pages ??–??, Ann Arbor,
Michigan, Mar. 4-6 1999.

[3] S. Chaudhuri. Scheduling and Design Space Exploration in High-Level Synthe-
sis. PhD thesis, Electrical, Computer, and Systems Engineering – Rensselaer
Polytechnic Institute, 1995.

[4] E. B. Fernández and B. Bussell. Bounds on the number of Processors and Time
for Multiprocessor Optimal Schedule. IEEE Transactions on Computers, C-
22(8):745–751, Aug. 1973.

[5] Y. Hu and B. S. Carlson. Improved Lower Bounds for the Scheduling Optimiza-
tion Problem. In Proc. of 1994 IEEE International Symp. on Circuits and Sys-
tems., pages 295–298, London, England, May 30-June 2 1994. IEEE Computer
Society Press.

[6] Y. Hu, A. Ghouse, and B. S. Carlson. Lower Bounds on the Iteration Time and
the number of Resources for Functional Pipelined Data Flow Graphs. In [13],
pages 21–24.

[7] M. Langevin and E. Cerny. A Recursive Technique for Computing Lower-
Bound Performance of Schedules. In [13], pages 16–20.

[8] S. Y. Ohm, F. J. Kurdahi, and N. Dutt. Comprehensive Lower Bound Estimation
from Behavioral Descriptions. In Proc. of the IEEE/ACM International Confer-
ence on Computer-Aided Design, pages 182–187, San Jose, California, Nov. 6-
10 1994. IEEE Computer Society Press.

[9] J. M. Rabaey and M. Potkonjak. Estimating Implementation Bounds for Real
Time DSP Application Specific Circuits. IEEE Transactions on Computer-
Aided Design, 13(6):669–683, June 1994.

[10] M. Rim and R. Jain. Lower-Bound Performance Estimation for the High-Level
Synthesis Scheduling Problem. IEEE Transactions on Computer-Aided Design,
13(4):451–458, Apr. 1994.

[11] A. Sharma and R. Jain. Estimating Architectural Resources and Performance
for High-Level Synthesis Applications. IEEE Transactions on VLSI Systems,
1(2):175–190, June 1993.

[12] B. Simons. A Fast Algorithm for Multiprocessor Scheduling. In Proc. of the 21st
Annual Symposium on Foundations of Computer Science, pages 50–53, Syra-
cuse, New York, Oct. 13-15 1980. IEEE Computer Society Press.

[13] Proc. of the IEEE International Conference on Computer Design, Cambridge,
Massachusetts, Oct. 3-6 1993. IEEE Computer Society Press.

2


