
E�ciently Searching the Optimal Design Space�

Stephen A. Blythe Robert A. Walker

Saint Louis University Kent State University

Computer Science Department Mathematics and Computer Science Dept.

St. Louis, MO 63156 Kent, OH 44242

Abstract

One of the primary advantages of a high-level synthesis
system is its ability to explore the design space. This
paper presents several methodologies for design space
exploration that compute all optimal tradeo� points for
the combined problem of scheduling, clock length
determination, and module selection. We dis-
cuss how each methodology takes advantage of both the
structure within the design space itself as well as the
structure of, and interaction between, each of the three
subproblems.

1 Introduction

One of the primary advantages of a high-level synthe-
sis system is its ability to explore the design space in
an attempt to �nd the optimal tradeo� curve between
area (ideally total area, but often only functional unit
area) and time (the schedule length, or latency). This
process of design space exploration can be viewed as
solving either the time-constrained scheduling (TCS)
problem (minimizing the functional unit area) for some
range of time constraints, or the resource-constrained
scheduling (RCS) problem (minimizing the latency) for
some range of resource constraints.
Consider the design space shown in Figure 1 { this

curve can be described by the set of points f(T; f(T))g,
where f(T) is the minimum area required for a given
time constraint T (i.e., the optimal solution to that
TCS problem). To ensure that this curve is completely
characterized, one could exhaustively solve the TCS
problem optimally for every time constraint T from
Tmin (the critical path length) to Tmax (the time con-
straint corresponding to the module selection / allo-
cation with the minimum area). However, this brute-
force approach is not very e�cient.
Alternatively, one could compute either lower

bounds [1] or estimates [2] on the optimal tradeo� curve
for some set of time or resource constraints. However,
it would be preferable to compute the optimal tradeo�
curve, provided that such a derivation can be made in
an e�cient manner.
Fortunately, the optimal tradeo� curve can be com-

pletely characterized by the set f(T �; f(T �))g of Pareto
points [3, 4] (shown by black dots in Figure 1) { those
points for which there is no design with a smaller la-
tency and the same area, and no design with a smaller
area and the same latency. More intuitively, these
points are represented by all the knees found in the
tradeo� curve.

�Portions of this work were supported by the National Science
Foundation under Grants MIP-9423953 and MIP-9796085.

max

Amin

*f(T)

A

Tmin
A

re
a

T T Tmax* Latency

f(T)

Figure 1: Example design space showing Pareto points. The shaded
regions show the two distinct clusters of Pareto points that many
tradeo� curves exhibit.

A truly e�ective design space exploration method-
ology must incorporate as many design parameters as
possible so as to reect a realistic tradeo� curve. It
must support complex module libraries, and must con-
sider controller e�ects, register and interconnect area,
etc. We have concentrated on extending our prior work
to incorporate module selection as well as clock length
determination, and on e�ciently �nding the optimal
tradeo� curve for this combined problem. Note that
this is far more complex than simply solving a single
scheduling problem { it requires �nding the optimal so-
lutions to thousands of permutations of this problem.

2 Axis-Based Exploration

To �nd the Pareto points for this combined problem
of scheduling, clock length determination, and mod-
ule selection, the most obvious approach is to simply
scan either the latency or area axis; that is, either
solve the TCS problem repeatedly for various time (la-
tency) constraints or solve the RCS problem repeatedly
for various resource (functional unit area) constraints.
However, since this may require solving thousands of
scheduling problems, it is important both (1) to use the
structure of the problem to reduce the number of con-
straints to explore, as well as (2) to e�ciently explore
the design space at each constraint. In this section, we
will concentrate on the former point; for a discussion of
using polynomial time bounding and exact techniques
in conjunction for e�cient exploration, see [5].

1999 Great Lakes Symposium on VLSI, pp. 192-195

2.1 Latency-Axis Exploration

In [5], we described a latency-axis exploration method-
ology for �nding all the Pareto points by determining
a small set of time constraints to explore, and solv-
ing the TCS problem at each time constraint. This
set is explored in increasing order, with each time con-
straint being analyzed to determine if it corresponds
to a Pareto point. This analysis is performed in sev-
eral stages. First, a lower bound on the area is com-
puted using e�cient bounding techniques [6]. If the
lower bound is above the current curve, it can not be
a Pareto point. If it is below the current curve, it may
be a Pareto point, so an upper bound on the area is
calculated. If this upper bound is equal to the lower
bound, those bounds correspond to the optimal sched-
ule, and that schedule is indeed a Pareto point. If not,
a tighter lower bound method is computed using an
LP-relaxation [7, 8], and this process is repeated. If
the results are still not conclusive, then an exact ILP-
based scheduler is used [9].

2.2 Area-Axis Exploration

Viewing the previous approach as a latency-axis explo-
ration methodology, an alternative approach is based
on the area axis: the Pareto points can be found by
determining a set of area constraints to explore, and
then optimally solving the RCS problem at each area
constraint. It is also necessary to reduce the number
of constraints to explore, as searching the entire inte-
gral range along the area axis would be prohibitively
expensive.

2.3 Latency-Axis vs. Area-Axis Exploration

In practice, neither approach is universally better than
the other. Experiments have shown that most of the
time, it was faster to use area-axis exploration, but
for some examples, several of the RCS problems were
quite time-consuming to solve optimally. However, ex-
pressing those problems as TCS problems tended to
be signi�cantly faster, resulting in faster latency-axis
exploration. Thus it is unclear how to determine, a
priori, which axis to choose for exploration.

3 A Timmer-Like Exploration

Since neither axis-based method is universally e�ec-
tive, it might be desirable to combine them in some
way to further increase the e�ciency of the exploration
methodology. One approach would be to combine them
using a search methodology similar to the one em-
ployed by Timmer in [1]. However, our studies have
shown that this method is not e�cient for the com-
bined problem of scheduling, clock length determina-
tion, and module selection. Moreover, our studies have
also shown that Timmer's methodology may fail to cor-
rectly �nd the optimal tradeo� curve for this prob-
lem. This pitfall is briey outlined in Figure 2, where
Timmer's method has (correctly) found the rightmost
Pareto point through an application of RCS. Since TCS
is now performed at this new time constraint, the re-
sult may miss the candidate clock length and module
selection combination that corresponds to the next true

Timmer Curve

T
C

S

RCS

T
C

S

Timmer Pareto Candidates
True Optimal Curve
True Pareto Points

RCS

A
B

C

D

Figure 2: The pitfall of Timmer's method when considering clock
length and module set determination

50

100

150

200

250

300

350

400

450

500 1000 1500 2000 2500 3000 3500 4000 4500

A
re

a

Latency

AR Optimal (Pareto-Based) Curve
EWF Optimal (Pareto-Based) Curve

Figure 3: The EWF and AR optimal Pareto-base curves when using
the library from Table 1

Pareto point (D) to the left, which our methodology
would correctly and e�ciently �nd.

4 Pivoting Between Latency-Axis and

Area-Axis Exploration

Another approach to combining latency-axis and area-
axis exploration is to consider the structure of the
tradeo� curve. As shown in Figure 1, a large num-
ber of the Pareto points are clustered into two regions:
one where the latency is small and the area is large,
and another where the area is small and the latency is
large. This phenomenon is also illustrated in Figure 3.
Here, the latency-axis methodology (exploring the la-
tency axis in the direction of increasing latency) would
�nd many Pareto points fairly quickly, but would then
waste a considerable amount of time exploring time
constraints that do not correspond to Pareto points un-
til the high-latency cluster of Pareto points is reached.
Using the area-axis methodology (exploring the area
axis in the direction of increasing area) has a similar
shortcoming.
However, this shortcoming can be overcome by piv-

oting between the two axis-based methods { using the
latency-axis methodology to explore the high-area /

2

Module Area Delay Operations

alu 100 125 f�;+;�; <;>g
mul 80 100 f*g
add 50 50 f+g
sub 60 60 f-g
cmp 65 60 f<;>g

Table 1: An arti�cial complex library

% time constraints explored
100 50 33 20 10 5 0

DIFF
14:07 3:58 2:24 2:01 1:38 1:49 2:46
94 52 42 45 44 44 72

AR
48:08 11:04 7:45 5:57 4:41 9:24 8:50
198 102 75 48 37 57 49

EWF
55:45 7:01 3:01 1:29 221:46 209:51 223:22
230 116 79 48 26 24 42

Table 2: Results from simple pivoting

low-latency cluster, and using the area-axis method-
ology to explore the high-latency / low-area cluster.
When exploring the latency axis in the direction of
decreasing latency, the most obvious method of piv-
oting is to simply switch from latency-axis exploration
to area-axis exploration after exploring a certain per-
centage of the latency axis. Note that after making
this switch, the area-axis methodology must still ex-
plore the area axis in the direction of increasing area
(so that information from previous schedules can be
used to prune the search space as described in [5]), but
now it can stop when it reaches the last Pareto point
found by the latency-axis methodology.
The results of performing this pivoting process for

various percentages of the latency axis are presented
in Table 2. Note that the 0% column corresponds to
an immediate pivot to area-axis exploration, and the
100% column corresponds to using solely latency-axis
exploration. Not surprisingly, for the tradeo� curves
depicted in Figure 3, the percentages that result in
the fastest execution times are fairly low (10%-20%),
since most of the low-latency cluster of Pareto points
are within the �rst 20% of the latency axis. Unfortu-
nately, however, there is no consistent percentage that
will always correspond to the best pivot point for ev-
ery tradeo� curve, regardless of whether the execution
time 1 or the number of points being explored is the
quantity being minimized. Thus, a better method for
deciding where to pivot must be found.

5 Dynamic Pivoting

Since the best pivot point cannot be determined a pri-
ori, it must be determined dynamically during the ex-
ploration process. Since the tradeo� curve often ex-
hibits two clusters of Pareto points as described earlier,
one approach would be to determine when a cluster is
being left, and pivot while exploring the next few points
that are not members of either cluster. When explor-
ing the latency axis, this pivot would occur when the

1Once again, the EWF example contains several points that are
computationally more expensive when solved as RCS problems { thus
the dramatic execution time increase between 20% and 10% despite
the decrease in points explored.

% time constraints in window
0(a) 5 10 15 20 100(t)

DIFF
2:36 1:48 2:23 4:40 5:20 14:07
72 44 49 55 59 94

AR
8:50 10:08 6:20 7:34 8:21 48:08
49 55 53 63 73 198

EWF
223:22 256:05 256:15 2:50 3:50 55:45
42 27 39 74 86 230

Table 3: Results from dynamic window-based pivoting

curve begins to \atten out" into a roughly horizontal
line.
One simple method of implementing this dynamic

pivot would be to consider a window of constant size
that contains the last n design points explored (al-
though many of these would not be Pareto points).
Then, if the area corresponding to the �rst element in
the window (i.e., the shortest time constraint) is not
signi�cantly larger than the area of the current time
constraint, the current point is selected as the pivot
point. In other words, if a Pareto point has not been
found recently, pivot from latency-axis exploration to
area-axis exploration.
The results of applying this dynamic window-based

pivoting are given in Table 3. To determine when a
\insigni�cant" change in area was reached, the size of
the current window was compared to the change in area
over that window. If the percentage change in area was
smaller than the size of the window as a percentage of
the total number of time constraints, we pivoted to
using the area axis; otherwise we continued using the
latency axis. Unfortunately, there was no consistent
window size that yielded the best result in all cases.
However, a window size of 10%-15% of the time con-
straints generally seemed to give good results.
Looking at Table 3, the �rst example shown (DIF-

FEQ) is small enough that 5% of the time constraints
is statistically insigni�cant, leading to results that are
dominated by the area-axis exploration. However, the
EWF results give a strong argument for using dynamic
pivoting { here a bad a priori choice of using only
latency-axis exploration or area-axis exploration (as
shown in Table 2) could lead to a signi�cantly larger
execution time than 15% dynamic pivoting.

6 Further Results

In all of our results so far, we have used the library
presented in Table 1. That library has a number of
di�erent delays, which complicates any design space ex-
ploration methodology that considers clock length de-
termination. However, it has only two alternatives for
each operation type, leading to a fairly small number
of module selection candidates.
Now consider Table 4, which is the opposite: it

has fewer unique functional unit delays, and several
of those delays are multiples of each other. Both of
these factors result in fewer resulting candidate clock
lengths (for example, several functional units have 50
as a candidate clock length). However, this library has
a much larger number of module selection candidates.

3

Module Area Delay Operations

mul1 500 200 f*g
mul2 600 150 f*g
mul3 800 100 f*g
sub1 100 160 f-,<g
sub2 200 110 f-,<g
sub3 400 60 f-,<g
add1 90 150 f+g
add2 185 100 f+g
add2 380 50 f+g

Table 4: A module selection intensive library

Latency Area Timmer Pivot (15%)

DIFF
44:22 4:37 32:58 6:15
89 359 158 176

AR
369:32 213:17 313:27 192:17
59 224 69 60

EWF
149:59 232:01 298:46 43:13
63 259 52 31

Table 5: Results when using a library with many module selections

Results using this library are presented in Table 5.
Compared to results using the previous library when
the latency-axis methodology is used, there is signif-
icantly more time being spent exploring the latency
axis, since the module selection problem is now much
more di�cult and latency-axis exploration gets most
of its time savings due to the structure of the clock
length determination problem. However, for area-axis
exploration the results are now generally faster, reect-
ing the savings due to considering the structure of the
module selection problem. Again, as with the �rst li-
brary, EWF gives several RCS problems that are time
consuming to solve optimally (while the corresponding
TCS problems are not as time consuming), thus dra-
matically increasing overall run time for the area axis.
Note that in all cases the number of area constraints
to solve is much higher { thus the savings in execu-
tion time must result from the fact that there is more
structure to each constraint along the area axis for this
library.
As with the prior library, Timmer-like exploration

(even our neighborhood-based Timmer-like explo-
ration) once again fails to produce faster run times
for this library, although in this case the primary con-
tributing factor is not only clock length determination
but the number of possible module selection candidates
at each of the generated time constraints. For AR and
EWF, the pivoting method once again gave the best
execution times2, but this time it also explored fewer
points than the Timmer-like method!
Finally, note that the resulting design spaces for

these two benchmarks are also much more complex for
this library, as can be seen in Figure 4. The added
complexity of these plots is directly attributable to the
complexity of the module selection problem { many
more area constraints exist, leading to more Pareto

2The DIFFEQ benchmark once again gives skewed results as its
size does not allow a statistically signi�cant number of Pareto points
to be incorporated within the 15% design window, thus not allowing
the pivoting method to take full advantage of the structure in the
resulting design space.

500

1000

1500

2000

2500

3000

3500

4000

500 1000 1500 2000 2500 3000 3500 4000 4500

A
re

a

Latency

AR Optimal (Pareto-Based) Curve
EWF Optimal (Pareto-Based) Curve

Figure 4: The EWF and AR optimal Pareto-base curves when using
the library from Table 5

points being derived from the corresponding resource
constraints.

7 Conclusions and Future Work

We have examined the process of design space explo-
ration, reducing that process to one of characterizing
the optimal latency-area tradeo� curve by �nding all
the Pareto points on that curve. For the combined
problem of scheduling, clock length determination, and
module selection, we have presented several exploration
methodologies: dedicated latency-axis or area-axis ex-
ploration, a Timmer-like exploration method, and two
methods (one static, one dynamic) for pivoting be-
tween the two axis-based methods. We have discussed
how the tradeo� curve is dominated by two clusters
of Pareto points, and how that structure, along with
the structure of the combined problem, can be used to
more e�ciently �nd the Pareto points.

References
[1] A. H. Timmer, M. J. M. Heijiligers, and J. A. G. Jess, \Fast

System-Level Area-Delay Curve Prediction," in Proc. of 1st
APCHDLSA, pp. 198{207, 1993.

[2] L.-G. Chen and L.-G. Jeng, \Optimal Module Set and Clock Cy-
cle Selection for DSP Synthesis," in Proc. of 1991 IEEE Interna-
tional Symp. on Circuits and Systems., (Singapore), pp. 2200{
2203, IEEE Computer Society Press, June 11-14 1991.

[3] G. De Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill series in electrical and computer engineering, New
York, NY, USA: McGraw-Hill, 1994.

[4] R. K. Brayton and R. Spence, Sensitivity and Optimization.
Computer-aided design of electronic circuits, 52 Vandervilt Av-
enue, New York, NY 10017, USA: Elsevier Science Publishing
Co., INC., 1984.

[5] S. A. Blythe and R. A. Walker, \Towards a Practical Methodol-
ogy for Completely Characterizing the Optimal Design Space,"
in Proc. of the 9th International Symposium on System-Level
Synthesis, (La Jolla, California), pp. 8{13, IEEE Computer So-
ciety Press, Nov. 6-8 1996.

[6] S. Chaudhuri and R. A. Walker, \Bounding Algorithms for De-
sign Space Exploration," in Proc. of the 9th Great Lakes Sym-
posium on VLSI, (Ann Arbor, Michigan), pp. ??{??, Mar. 4-6
1999.

[7] S. Chaudhuri, S. A. Blythe, and R. A. Walker, \A Solution
Methodology for Exact Design Space Exploration in a Three Di-
mensional Design Space," IEEE Transactions on VLSI Systems,
vol. 5, pp. 69{81, Mar. 1997.

[8] S. Chaudhuri and R. A. Walker, \Computing Lower Bounds
on Functional Units before Scheduling," IEEE Transactions on
VLSI Systems, vol. 4, pp. 273{279, June 1996.

[9] S. Chaudhuri, R. A. Walker, and J. E. Mitchell, \Analyzing and
Exploiting the Structure of the Constraints in the ILP Approach
to the Scheduling Problem," IEEE Transactions on VLSI Sys-
tems, vol. 2, pp. 456{471, Dec. 1994.

4

