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Abstract

This paper presents a general treatment of the combi-
natorial approach to the scheduling problem, enhanc-
ing previous formulations in the literature. The focus
of this paper is a formal analysis of the ILP approach,
which we use to evaluate the structure of our formu-
lation. Polyhedral theory and duality theory are used
to demonstrate that e�cient solutions of the schedul-
ing problem can be expected from a carefully formulated
integer linear program (ILP). Furthermore, we use the
theory of valid inequalities to tighten the constraints
and make the formulation more e�cient.

1 Introduction

In high-level synthesis [10], the scheduling problem in-
volves sequencing a set of operators into di�erent con-
trol steps, while not using more than some speci�ed
number of functional units. In the past, methods based
on heuristics and integer linear programming (ILP)
have been employed to solve the problem. ILP formu-
lations guarantee optimal results, and schedulers such
as OASIC[4] and ALPS[7] have produced better sched-
ules than heuristic algorithms, in comparable time for
medium-sized problems.
However, existing ILP based scheduling algorithms

have provided little formalismto indicate the quality of
the corresponding formulation, i.e., how tight it is. The
worst case performance of an ILP solver is exponential
in time. Therefore, in order to use the ILP approach
to solve practical size problems, it is important that
the formulation be well structured, and formal analy-
sis is needed to determine the tightness of a problem
formulation.
The purpose of formal analysis goes far beyond the-

oretical interest; it is necessary for further improve-
ment of the ILP formulation. For other NP-complete
problems, most notably the traveling salesman problem
(TSP), ILP approaches have optimally solved large size
problems, but only after the problem constraints were
carefully analyzed [9]. For the scheduling problem, we
also show that new tighter constraints can be found,
using the theory of valid inequalities.
Our objective is not just to present another ILP

based algorithm, but to introduce a formal structure
to the ILP approach of solving the scheduling problem.
The analysis presented here can be used to identify the
strengths and weaknesses of the other ILP formulations
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in the literature; but we will refrain from doing this in
the interest of space.
In the next section, we describe the scheduling prob-

lem polytope. The main work is presented in Sections
3, and 4, where we describe the structure of the con-
straints, and the solution methodologies. The experi-
mental results in Section 4 are used to show the validity
of the predictions made from the analysis in the previ-
ous sections.

2 The Scheduling Problem Polytope

Given a cdfg let I be the index set of all operators, and
oi ! oj indicate a precedence relation, which means
that operator i must �nish execution before operator j
can start. Suppose the cdfg is to be scheduled onto a
set S of control steps. As-soon-as-possible (ASAP) and
as-late-as-possible (ALAP) schedules give a continuous
range Si of control steps, called the schedule interval,
over which an operator oi can be scheduled.
The type of an FU indicates its functionality (eg.

multiplication, addition). Let K be the set of types
that are available. Let ak and mk respectively be the
area and number of functional units of type k 2 K.
The type of the operators are determined by the type
function � : I ! K. � (i) = k means operator oi is
executed on a functional unit of type k.
Consider the set of nodes V =

�
(i; s)ji 2 I ; s 2 Si

	
,

where a node (i; s) indicates the event that operator oi
is scheduled in control step s. Each operator oi cor-
responds to a set of nodes Vi =

�
(i; s)js 2 Si

	
. Fur-

thermore, each functional unit type k relates, for each
control step s, to a set of nodes Vk;s =

�
(i; s) j s 2

Si ; � (i) = k
	
. Each feasible schedule Q � V con-

tains exactly one node from each Vi, satis�es all the
precedence constraints between operators, and uses no
more than the available number of functional units.
The feasible schedules will be described by the follow-
ing notations:

xQ A real jV j-vector (xQ 2 RjV j), called the incidence
or characteristic vector of Q, where Q � V , de-
�ned as follows:

x
Q
i;s =

�
1; if (i; s) 2 Q

0; if (i; s) 62 Q

Q Set of all feasible schedules. This is a set of subsets
of V .
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Figure 1: Constraint graph (a) The precedence graph
(b) The corresponding constraint graph. The nodes have
been shaded to indicate a fractional extreme point of the
scheduling polytope

2.1 Constraint Graph

Before we can characterize Q, we need to introduce
the constraint graph (Gc), which is de�ned as Gc =
fV;E1 [ E2g. The edges in E1 are called assignment
edges, and the edges in E2 are called precedence edges.
The assignment edges connect the nodes of V in such a
way that each Vi represents a clique. When stated for-
mally, E1 =

�
(v1; v2) j 9 i such that v1; v2 2 Vi

	
. The

precedence edges connect two nodes in V that cannot
simultaneously belong to a feasible schedule because of
a precedence con
ict. Formally, E2 =

�
(v1; v2) j v1 =

(i; s1) ; v2 = (j; s2) ; s1 � s2 ; oi ! oj
	
.

A precedence clique (Cp) is de�ned as a clique in Gc

that has at least one edge from E2 connecting two of
its nodes. All of these de�nitions are illustrated in the
constraint graph of Fig 1(b) which corresponds to the
precedence graph in Fig 1(a).

2.2 Description of the Scheduling Polytope

The scheduling polytope constitutes the feasible region
for our integer linear programming (ILP) formulation
of the scheduling problem, and is de�ned as the convex
hull of the incidence vectors of all feasible schedules as
described below:

PI(Q) = convfxQ 2 RjV j j Q 2 Qg

We have de�ned PI(Q) in a way such that its extreme
points are integral, and thus denote feasible schedules.
It is known that the worst case performance of an

ILP is exponential in time. However, if we can describe
the feasible region PI(Q) with only a set of linear equal-
ity and inequality constraints (omitting the integrality

constraints), then a linear program (LP) will produce
the optimal solution to the ILP. An LP can be solved
in polynomial time; therefore, we will attempt to de-
scribe PI(Q) as tightly as possible using only equality
and inequality constraints, so that the ILP solution can
be e�ciently found by solving a small number of LP's.
In this paper, we assume single cycle operators only,

although the formulation can easily be extended to
multicycle operators. Under this assumption, the set
Q of all feasible schedules is described in terms of the
incidence vector x of its subsets in the following way:

xi;s � 0; 8 (i; s) 2 V (O)

jxVij =
X
v2Vi

xv = 1; 8 i 2 I (A)

jxCp j =
X
v2Cp

xv � 1; 8 Cp 2 V (Sec 2.1)(P)

jxVk;sj =
X

v2Vk;s

xv � mk; s 2 S; 8 k (R)

xi;s integer (I)
The constraints (A), (P), and (R) are called the as-
signment, precedence, and resource constraints, respec-
tively.
The above constraints can be represented in the

form fx 2 R
jV j
+ j Max = 1 ; Mpx � 1 ; Mrx �

n ; x integer g, where Ma is the coe�cient matrix due
to the assignment constraints,Mp is the coe�cient ma-
trix due to the precedence constraints, and Mr is the
coe�cient matrix due to the resource constraints. If
we denote the fractional scheduling polytope as:

PF (Q) = fx 2 RjV j
+ jMax = 1 ; Mpx � 1 ; Mrx � n g

(1)
then we can write:

PI(Q) = convfx 2 PF (Q) j x integer g (2)

In this section we have given a description of PI(Q),
that in addition to equality and inequality constraints,
also requires the variables to be integral. Using this
preliminary description, we will examine in later sec-
tions how much it possible to avoid the integrality con-
straints so that the ILP can be solved quickly by solving
a set of LP's.

3 The Problem Structure

The success of a combinatorial scheduling algorithm
depends on how tightly we can de�ne PI(Q) without
using the integrality constraints. In the previous sec-
tion, we �rst de�ned PF (Q) in terms of the assign-
ment, precedence, and resource constraints, and then
obtained PI(Q) by adding the integrality constraints.
The purpose of this section is to examine how close
PF (Q) is to PI(Q). Although a thorough examination
is as hard as solving the scheduling problem itself, we
can get some useful information by selectively drop-
ping some of the constraints. In Section 3.1 and 3.2
we will drop the precedence and resource constraints
respectively, and in Section 3.3 we will consider all the
constraints together to see how they interact.
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3.1 The Polytope of the Assignment and the
Resource Constraints

In this section we will drop the precedence constraints,
and consider the family R of subsets of V that satisfy
the resource and the assignment constraints. These
subsets are called feasible resource allocations. The
resource-assignment polytope PI(R) is the convex hull
of the incidence vectors of all the feasible resource al-
locations, and is described as:

PF (R) = fx 2 R
jV j
+ j Max = 1 ; Mrx � ng

PI(R) = convfx 2 PF (R) j x integerg

We want to show that the assignment and the resource
constraints completely describe PI(R), i.e. PF (R) =
PI(R).

Lemma 1 The matrix A =

�
Ma

Mr

�
describing the

constraints of PF (R) is totally unimodular (TU).

Proof: The rows of A are nothing but the incidence
vectors of Vi and Vk;s; i 2 I; k 2 K; s 2 S. From the
de�nition it is clear that each node (i; s) 2 V belongs
to exactly one Vi and one Vk;s. Thus each node has
an entry 1 in exactly two rows; in other words, each
column of A contains two 1's, one in Ma and one in
Mr . This implies that A is TU [11].

Proposition 1 The polytope de�ned by the assign-
ment and the resource constraints is integral, i.e.
PF (R) = PI(R)

Proof: It is a well-known result that if A is TU then
P = fx 2 Rn

+jAx � bg is integral when the elements
of b are integral [11]. When this fact is applied to
the description of PF (R) along with the result of the
previous lemma, the proof is obvious.

We have demonstrated that the resource constraints
and the assignment constraints together describe an
integral polytope PI(R). It is an important result that
tells us that so long the resource constraints are consid-
ered independent of the precedence constraints, Mrx � n
describes the tightest possible resource constraints.

3.2 The Polytope of the Precedence and the
Assignment Constraints

In this section we will drop the resource constraints
and consider the subsets of V , called feasible precedence
allocations, that satisfy the assignment and precedence
constraints. Let N be the set of all feasible precedence
allocations. The convex hull of the incidence vectors of
all the feasible precedences constructs the precedence-
assignment polytope, and can be described as follows:

PF (N ) = fx 2 R
jV j
+ j Max = 1 ; Mpx � 1g

PI(N ) = convfx 2 PF (N ) j x integerg

Instead of considering only the feasible precedences,
if we also include all the subsets of each feasible

precedence, then we get the monotone precedence-
assignment polytope; its fractional counterpart is given
below:

PF ( ~N ) = fx 2 R
jV j
+ j Max � 1 ; Mpx � 1g (3)

De�nition 1 A node packing on a graph G = fV; Eg
is a set U � V with the property that no two nodes in
U are joined by an edge.

De�nition 2 A clique matrix of a graph G is a 0-1
matrixK whose columns correspond to the nodes of G
and rows correspond to the incidence vectors of all the
maximal cliques of G.

De�nition 3 The fractional node packing polytope of
a graph G is P = fx 2 Rn

+; Kx � 1g, where K is the
clique matrix of G.

The rows of the constraints graph's clique matrix
are nothing but the rows of Ma and Mp. Therefore,
the contraint graph's fractional node-packing polytope
is the same as its monotone fractional precedence-
resource polytope, as can be veri�ed from (3).

De�nition 4 A graph G = fV;Eg is called transi-
tively orientable if each edge can be assigned a one-
way direction in such a way that the resulting oriented
graph (V; F ) satis�es the following property:

(a; b) 2 F and (b; c) 2 F implies (a; c) 2 F

In the following proposition we show that the con-
straint graph is transitively orientable.

Proposition 2 The constraint graph Gc is transitively
orientable

Outline of Proof: To prove the proposition, we have to
�nd a method of assigning directions to each edge in Gc

and then show that the resulting orientation is transi-
tive.

Proposition 3 The fractional monotone precedence
assignment polytope is integral, i.e PF ( ~N ) = PI( ~N ).

Proof: A transitively orientable graph is a perfect
graph [5], hence the constraint graph Gc is also a per-
fect graph. By de�nition, the fractional node-packing
polytope of a perfect graph is integral [11], which im-

plies that PF ( ~N ) is an integral polytope.

The above result immediately leads to the integrality
of the fractional precedence assignment polytope, and
is stated in the following corollary:

Corollary 4 The polytope de�ned by the assignment
and the precedence constraints is integral,
i.e. PF (N ) = PI(N )

The precedence cliques of the constraint graph Gc can
also be expressed using precedence constraints simi-
lar to those used in OASIC [4], but we have used the
precedence clique description here because it is more
suitable for the analysis of the polytope structure.
In this section we have proved that the precedence

and assignment constraints together describe an inte-
gral polytope PI(N ). Thus, as long as there are no
resource constraints, or if the resource constraints are re-
laxed with penalty terms in the objective function, the
resulting ILP can be solved as an LP.
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3.3 The Polytope of the Assignment, Prece-
dence, and the Resource constraints

We have demonstrated that PI(R) and PI(N ) can be
completely described even if we drop the integrality
constraints; we want to know if the same is true for
PI(Q). In other words, is PF (Q) = PI(Q), meaning
that an ILP on PI(Q) can be solved as an LP? The
answer is \no", as will be shown in Example 1.
However, we can at least try to tighten our descrip-

tion of PF (Q) so that it approximates PI(Q) more
closely. This can be done by introducing new tighter
constraints which take into account the e�ect of the
precedence and resource constraints upon one another.
In the following two propositions, we will show two new
types of tighter constraints.
We �rst de�ne two quantities npredi;k, and nsucci;k

which give the number of predecessors and successors
of operator oi that are executed on functional units of
type k.

Proposition 5 If npredi;k > (s�1)mk , or nsucci;k >
(jSj � s)mk for any k 2 K; s 2 Si, then xi;s = 0 in
any feasible schedule.

Proof: The number of operators that can be scheduled
on functional units of type k before and after control
step s are respectively (s � 1)mk and (jSj � s)mk. If
these numbers are less than the number of oi's prede-
cessors and successors of type k, then it is impossible
for operator oi to be scheduled in control step s.

Example 1 As an illustration of the constraints in-
troduced by the application of the above proposition,
consider the constraint graph of Fig 1. The polytope
PF (Q) constructed from the graph has a fractional ex-
treme point as denoted by the shading of the nodes.
When an objective function composed of a weighted
sum of the node variables is optimized, the linear pro-
gram yields the fractional extreme point. After it is
found that npred3;adder = 6 > (3 � 1)madder = 4, we
can set x3;3 = 0, which produces an integral solution.

The resource constraints can also be tightened by con-
sidering the e�ects of the precedence relations. For
example, some nodes in Vk;s might have precedence
edges among them. We can construct a minimal clique
cover Vk;s =

Sp

l=1 Vl where each Vl represents a clique
made by precedence edges. Suppose, for each v 2 Vk;s,
pv gives the number of cliques that contain v. We can
safely assume p > mk, because otherwise the corre-
sponding resource constraint can be dropped.

Proposition 6 If jxVk;sj � mk is a resource constraint
of Q, then

P
v2Vk;s

cvxv � mk is also a valid inequality

of Q; where cv = maxf1;mk + pv � pg.

Outline of Proof: For any feasible schedule x, let:

V 0 = f v 2 Vk;s j cv > 1;xv = 1 g

V 00 = f v 2 Vk;s j cv = 1;xv = 1 g

Then we can show mk �
P

v2V 0 pv + jV 00j. This result
is used in the following deduction:

X
v2Vk;s

cvxv =
X
v2V 0

pv + jV
00j+ jV 0j(mk � p)

� mk + (jV 0j)(mk � p)

� mk since p > mk

Here we want to point out that the clique cover of Vk;s
may not be unique, and therefore, the same resource
constraint can be extended in more than one way. Al-
though each of them are stronger than the original con-
straint, all of them may be needed to describe PI(Q).
In this section we have shown that the formulation

given in Sec 2.2 is not enough to ensure PI(Q) = PF (Q),
and have presented two methods to further tighten the
formulation.

4 Solution Methodology

In the preceding sections we presented structured con-
straints that tightly describe the scheduling polytope
PI(Q). However, if we consider all three sets of con-
straints simultaneously, there can still be cases where
the LP-relaxation produces non-integral optimal solu-
tions, and we have to use branch-and-bound to �nd the
integral optimal solution. In this section we will try to
quantify the performance of the branch-and-bound by
evaluating the quality of the bound obtained.
The bound on the objective function value is ob-

tained by solving a relaxation of the original problem,
most commonly an LP-relaxation. Another kind of re-
laxation, called the Lagrangian relaxation produces a
tighter bound, and has led to the success of Lagrangian
relaxation-based branch-and-bound algorithms to solve
the traveling salesman problem [6], and the minimum-
tardiness-scheduling problem [2]. Fisher [3] has re-
ported that the bounds produced by Lagrangian re-
laxation are on the average 95% within the optimum
value, and such tight bounds allow e�cient pruning of
the branches.
Let ZAR and ZAP be the Lagrangian bounds ob-

tained when the precedence and resource constraints
are relaxed respectively. Let ZLP be the bound given
by the LP-relaxation. The integrality of the resource-
assignment and the precedence-assignment polytopes
proved in the previous section implies ZAR = ZAP =
ZLP , which follows from the application of a known re-
sult of the duality theory [11]. The signi�cance of this
fact is that the bounds produced by the LP-relaxation are
as good as the bounds from the Lagrangian relaxation.
This is probably the reason why a small number of
branches were required to optimally solve all the test
problems we have run. Such experimental results will
be presented in the next section.

5 Results

The analysis of the ILP formulation presented in the
previous sections provides us with a theoretical ground
to expect optimal solutions in a relatively few number
of branches. In this section we will demonstrate the
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Schedule Loop Non-Pipelined Pipelined Bran-
Length Length Mult Mult ches

Mul ALU LV Mul ALU LV
RPI-ILP 17 17 2 3 10 3 3 10 0
FDLS 17 17 2 3 3 3
SA 17 17 3 2

ALPS 17 17 2 3 3 3
OASIC 17 17 2 3 10
RPI-ILP 18 18 2 2 9 1 3 10 0
FDLS 18 18 2 2 1 3 12
ALPS 18 18 2 2 1 3
OASIC 18 18 2 2 10 1 3 10
RPI-ILP 18 16 2 3 10 1 3
ALPS 18 16 2 3 1 3
RPI-ILP 19 19 2 2 9 1 2 9 2
FDLS 19 19 1 2 12
ALPS 19 19 1 2
OASIC 19 19 1 2 9
RPI-ILP 21 21 1 2 9 0
FDLS 21 21 1 2
ALPS 21 21 1 2

Table 1: Scheduling results for the Elliptic Wave Filter

validity of this prediction using a number of benchmark
examples: the 34-operator elliptical wave �lter (ewf),
the 48-operator discrete cosine transform (dct), and the
56-operator Kalman �lter.
It should be noted here that any ILP formulation

produces optimal results, so we don't expect our sched-
ules to be better than other ILP solutions. Our objec-
tive is to o�er a theoretical foundation for evaluating
the structure of the ILP formulation. For this purpose,
it is better to use the number of branches taken by the
ILP as the indicator of performance. We will demon-
strate the number of branches are small as we predicted
in the previous section.
The scheduling results are shown in Tables 1, 2,

and 3. We minimized an objective function that ap-
proximates the number live values across any control
step. We compare our results (RPI-ILP) with force-
directed list scheduling (FDLS)[12], simulated anneal-
ing (SA)[1], ALPS[7], OASIC[4] and SALSA [8]. For
all the benchmarks, we used the standard assumptions:
addition requires one control step, and multiplication
requires two control steps. For the kalman �lter, we
used the additional provision that a multiplication and
an addition can be chained into two clock cycles. The
columns labeled LV gives the maximumnumber of live
variables across any control step, and can be consid-
ered as the number of registers. The results reported
by RPI-ILP were achieved in less than one second of
CPU time for the ewf and the kalman example, and
in a few seconds for the dct example. It can be seen
that very few branches were required to compute the
optimal solution in all the cases. This indicates that
the ILP formulation is well behaved, and can be used
to generate exact solutions to the scheduling problem
in satisfactory time.

6 Conclusion

In this paper, we have presented an ILP formulation of
the scheduling problem, and have formally evaluated
the structure of the formulation. The analysis pre-
sented indicates that the e�ciency of a carefully for-

Schedule Non-Pipelined Pipelined
Length Mult Mult

ALUMul LV Bran ALUMul LV Bran
RPI-ILP 7 6 5 11 1 6 8 11 1
RPI-ILP 8 5 4 12 1 5 6 13 4
RPI-ILP 9 4 3 13 2 4 6 13 1
RPI-ILP 9 4 4 13 1 5 6 13 0
RPI-ILP 9 5 4 12 1 5 7 0
SALSA 7 6 8 12
SALSA 10 4 4 15

Table 2: Scheduling results for the Discrete Cosine Trans-
form Example

Schedule Length Mul ALU LV Branches

RPI-ILP 18 1 1 6 1
RPI-ILP 20 1 1 6 1

Table 3: Scheduling results for the Kalman Filter

mulated ILP, on the benchmark examples, is not an
arbitrary event. For the �rst time, we have given a
theoretical basis for expecting e�cient solutions from
an ILP based scheduling algorithm. Furthermore, we
have used the theory of valid inequalities to introduce
tighter constraints to increase the e�ciency of the al-
gorithm.
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