
Computing Lower Bounds on Functional Units before Scheduling�

Samit Chaudhuri
y
Robert A. Walker

zy

Rensselaer Polytechnic Institute
Troy, NY 12180

Abstract

This paper presents a new algorithm for computing
lower bounds on the number of functional units (FU's)
required to schedule a data ow graph in a speci�ed
number of control steps. We use a formal approach to
compute the bounds that can can be proven to be tighter
than those produced by existing methods, and that con-
siders the interdependencies of the bounds on the dif-
ferent FU-types. This quick yet accurate estimation of
the number of FU's is used to generate resource con-
straints for a design, and thus reduce the design space.

1 Introduction

In this paper, we discuss the problem of computing the
minimum number of functional units (FU) required to
schedule a data ow graph in a given number of control
steps. The general problem is NP-hard; however, we
present an e�cient methodology that produces prov-
ably tight lower bounds on the number of FU's.
Computing tight lower bounds on the number

of FU's is important for several reasons. Time-
constrained scheduling algorithms have to explore a
large search space in order to �nd the schedule with
minimum area. Tight bounds on the number of FU's
can be used as resource constraints to quickly narrow
down the design space, thus enabling the scheduling
algorithm to produce faster results. Furthermore, the
lower bounds provide information on the absolute qual-
ity of a design produced by heuristic algorithms [7].
Previous work on computing lower bounds in high-

level synthesis can be found in [5] and in [7] (which
reports the tightest bound so far). Our method di�ers
from [7] in two aspects. First, we present a formal ap-
proach to the problem and compute bounds that are
provably tighter. Second, the bounds given in [7] are
computed independently for each type of FU, eg. a for
the adders and m for the multipliers. It is then con-
cluded that any feasible design has less than a adders
and m multipliers, leading to a lower bound curve il-
lustrated using dotted lines in Figure 1. However, due
to precedence constraints between operators, the lower
bounds on the adders and the multipliers may not be
independent. More realistically, there are two bounds
(a;m0) and (a0;m), which will lead to a tighter lower
bound curve denoted by the solid line in Figure 1. Our
approach considers such interdependencies of bounds,
and thus produces a more accurate bound on the fea-
sible design space.

�This material is based upon work supported by the National
Science Foundation under Grant No. MIP-9211323.

yDept. of Electrical, Computer, and Systems Engineering.
zDepartment of Computer Science.

�

a

m

+

feasible designs

a0

m0

Figure 1: Lower-Bounding the Design Space. The Solid Line
Gives Tighter Bounds than the Dotted Line

2 Formal Description of the Lower-
Bounding Problem

In this section we present an integer linear program-
ming (ILP) formulation of the lower-bounding prob-
lem. The constraints of the ILP are similar to that of
the scheduling problem, and have been used by several
ILP-based schedulers [4, 3, 2].
Given a cdfg, let I be the index set of all operators,

and let oi ! oj indicate a precedence relation, meaning
operator i must �nish execution before operator j can
start. Suppose the cdfg is to be scheduled onto a set
S of control steps. As-soon-as-possible (ASAP) and
as-late-as-possible (ALAP) schedules give a continuous
range Si of control steps, called the schedule interval,
over which an operator oi can be scheduled.
The type of a functional unit (FU) indicates its func-

tionality (e.g., multiplication or addition). Let K be
the set of types that are available and let mk be the
number of functional units of type k 2 K. The type
of the operators are determined by the type function
� : I ! K, where � (i) = k means operator oi is ex-
ecuted on a functional unit of type k. By using the
function � , we have implicitly assumed that each op-
erator can be scheduled on only one type of FU. Thus
each FU-type k must execute all operators with index
set Ik = f iji 2 I; � (i) = k g, and fIkg for k 2 K is a
partition of I.
The lower-bounding subproblem �nds a lower bound

on mk for a particular k 2 K, and can be formulated
as:

min mkX
s2Si

xis = 1 8 i 2 I (A)X
i2Ik

xis � mk 8 s 2 S ; k 2 K (R)X
si�s; si2Si
sj�s; sj2Sj

xisi + xjsj � 1 8 s 2 Si \ Sj
8 oi ! oj

(P)

xis 2 Z+ 8 i 2 I; s 2 Si

To appear in the Proc. of the 7th HLSS 1

Note that, unlike previous formulations, the interde-
pendencies between the bounds are captured by our
model. Although the bounds on the FU's are computed
one type at a time, the bound on one type can a�ect the
bounds on other types. For example, while computing
the bound on mk0 , if we �x the values of mk, k 6= k0 in
constraint (R), then those values will a�ect the bound
indirectly through the precedence constraints in (P).
Let Ma be the coe�cient matrix due to the assign-

ment constraints (A), Mr be the coe�cient matrix due
to the resource constraints (R), and Mp be the coef-
�cient matrix due to the precedence constraints (P).
Then the above problem can be represented more con-
cisely in the following form:

(IPk) m�
k = minfmk jMpx � 1 ; x 2 Qg

where

Q = fx 2Zn+ j Max = 1 ; Mrx � m g

The problem (IPk) is similar to the time-constrained-
scheduling problem, so it is NP-hard [8]. In order to
�nd the lower bound e�ciently, we have to consider
a relaxation [6] of (IPk). A number of di�erent relax-
ations of (IPk) are possible, each of which produces a
lower bound on m�

k. We want to �nd the tightest lower
bound that can be found from all di�erent relaxations.
In the following paragraphs, we �rst present a prob-

lem RPk(�) which produces a lower bound on m�
k for

each nonnegative value of � :

RPk(�) rk(�) = minfmk + �(Mpx� 1) j x 2 Qg

where � is a vector of positive real numbers. Note that
the above problem does not contain the precedence
constraints. Instead, we have included them in the
objective function with the penalty term �(Mpx� 1).
Since � � 0, violations of the precedence constraints
will make the penalty term positive, and thus intu-
itively Mpx � 1 will be satis�ed if � is suitably large.
It can be easily seen that rk(�) � m�

k for all � � 0;
in other words, rk(�) provides a lower bound on m�

k.
If we solve the following problem:

(LDk) m�
k = max

��0
rk(�)

then we can �nd the greatest lower bound m�
k avail-

able from the in�nite number of lower bounds frk(�) j
� � 0g. Therefore, m�

k will produce the tightest lower
bound that can be found by relaxing the precedence
constraints.
In the solution of RPk(�), although the elements of

x have to be integral, the elements of � can be frac-
tional. Therefore, it is possible that the value of m�

k

will be fractional, in which case we can use dm�
ke as the

lower bound on the number of resources in any feasible
schedule.
Note that, we have not ignored the precedence con-

straints; instead, we have moved them to the objective
function. Therefore, our model will still consider the
interdependencies of the bounds. It can be proven that

dm�
ke gives a tighter bound than the bound reported

in [7], or the bound given by the LP-relaxation of (IPk),
but we will not do so here in the interest of space. The
complete proof is given in [1].
For the relaxation approach presented above to be

useful, an e�cient solution technique is needed to �nd
the value of dm�

ke. However, for any �, the relaxation
problem RPk(�), in its present form, is not solvable in
polynomial time. Therefore, the optimization problem
(LDk) is even harder to solve.
Fortunately, it is possible to compute dm�

ke in
polynomial time, without explicitly solving RPk(�) or
(LDk). The method is described in Section 6, and it
computes dm�

ke indirectly by solving a di�erent prob-
lem (Ek).
Although our method is straightforward, the proof of

its correctness requires an elaborate theoretical devel-
opment which is presented in the following three sec-
tions: Section 3 introduces the problem (Ek), Section
4 discusses how to solve (Ek) in polynomial time, and
Section 5 indicates an important property of the so-
lution of (Ek) that leads to the method described in
Section 6.

3 Transforming Problem (LDk)

The previous section has stated that RPk(�), in its
present form, is not solvable in polynomial time, which
implies that (LDk) is not solvable in polynomial time
either. However, instead of directly solving (LDk) to
compute m�

k, it is possible to compute dm�
ke by solving

a di�erent problem, which is formulated by transform-
ing (LDk). This procedure is explained in a step-by-
step manner in the following sections.

3.1 Step 1: Forming the Alternative Problem

The description of (LDk), as presented in Section 2, can
be viewed as the Lagrangian Dual [6] of IPk. There-
fore, we can use Proposition 6.2, Chapter II.3 in [6] to
conclude that the value of rk(�

�) can be computed by
solving an alternative problem as shown below:

(APk) m�
k = minfmk jMpx � 1 ; x 2 conv(Q) g

where conv indicates convex hull. However, even the
problem (APk), in its present form, is not solvable in
polynomial time. Fortunately, as will be shown in the
next step, we can transform this problem to a slightly
di�erent form so that the solution can be found in poly-
nomial time.

3.2 Step 2: Extending the Alternative Prob-
lem

Since problem (APk), as indicated in the previous sec-
tion, is not directly solvable in polynomial time, we
extend the formulation to a higher dimension so that
a polynomial time solution can be found. Let:

�mk be the largest number of type-k FU's that will
ever be required for any feasible schedule. For cor-
rectness of formulation, �mk has to be equal to an
upper bound for mk; this can always be ensured
by making �mk = maxs2S jf i j s 2 Si ; � (i) = k gj.

2

In the extended problem, we introduce additional vari-
ables, modify the resource constraints, and use a di�er-
ent objective function. The additional binary variables
ysj, s 2 S, j = 1; : : : ; �mk are used to denote that FU
j is occupied at control step s. The modi�ed resource
constraints are shown below:X

i2Ik

xis �

�mkX
j=1

ysj = 0 ; s 2 S; j 2 �mk (R0)

The above constraints can be described in terms of
their coe�cient matrices as Mrx �Myy = 0. The ex-
tended problem is now de�ned as:

(Ek) minff(y) jMpx � 1 ; x 2 conv(Q0) g

where

Q0 = f [x; y] 2 Q00jx; y integer g

Q00 = fx 2 Rn
+; y 2 R

p
+

jMax = 1 ; y � 1 ; Mrx�Myy = 0 g

The cost function f is is given below:

f(y) =

�mkX
j=1

cj
X
s2S

ysj (1)

where cj =

8>>><
>>>:

0 j = 1; : : : ; l � 1
1 j = l

jX
i=l+1

(jSj+ 1)i j > l
(2)

where l =

�
jIkj

jSj

�

In the following sections we will show that (Ek) can
be solved in polynomial time, and can be used to com-
pute the value of dm�

ke.

4 Solving the Extended Problem (Ek) in
Polynomial Time

In this section, we will show that the extended problem
(Ek) is solvable in polynomial time. The proof relies
on demonstrating that (Ek) is a linear program (LP).
Since an LP can be solved in polynomial time, such a
demonstration will imply polynomial time solvability
of (Ek).
The constraints of an LP must consist of only linear

equality and inequality constraints (i.e., no integrality
restrictions on the variables). Therefore, in order to
solve problem (Ek) as an LP, we must describe conv(Q0)
using only equality and inequality constraints.
In the following we will prove that conv(Q0) = Q00.

Since Q00 is described only using linear equality and
inequality constraints, this result will imply that (Ek)
can be solved as an LP.

Lemma 1 The coe�cient

matrix A =

"
Ma 0
0 I
Mr �My

#
describing the constraints

of Q00 is totally unimodular (TU).

Proof: The rows of A can be partitioned in the follow-
ing manner: 2

64 Ma 0

0 I

Mr �My

3
75

Each column of the above matrix contains exactly two
nonzero entries. If the nonzero entries are of the same
sign then the corresponding rows are contained in dif-
ferent partitions. If the nonzero entries are of the same
sign then the corresponding rows are contained in the
same partition. This is a su�cient condition for a ma-
trix to be TU [6].

Proposition 1 The polyhedron Q00 is integral, i.e.
Q00 = conv(Q0)

Proof: It is a well-known result that if A is TU then
P = fx 2 Rn

+jAx � bg is integral when the elements
of b are integral [6]. When this fact is applied to the
description of Q00 along with the result of the previous
lemma, the proof is obvious.

In the above proposition we have shown that conv(Q0)
can be described using only linear equality and inequal-
ity constraints. Therefore, problem (Ek) can be solved
as a linear program in polynomial time.

5 Properties of the Solution of the Ex-
tended Problem (Ek)

In the previous section, we have proven that an opti-
mal solution of (Ek) can be found in polynomial time.
In this section we will present an important property
satis�ed by the optimal solutions of (Ek), which allows
us to use such a solution to compute dm�

ke, the lower
bound on the number of FU's of type k in any feasible
solution. The main result is presented in Section 5.2;
but �rst we need to introduce some de�nitions and pre-
liminary results.

5.1 FU-patterns and their Properties

In this section, we introduce some de�nitions and pre-
liminary results that we will use in the next section to
present a method for computing dm�

ke.

De�nition 1 An FU-pattern is a vector u =
[u1; : : : ; ujSj], where us, s 2 S denotes the number of
operations performed on type-k FU's at control step s.
Formally, the set U of all possible FU-patterns is given
by:

U = fu 2 RjSj+ j
X
s2S

us = jIkj g

The cost of an FU-pattern is computed, using the cost
function de�ned in (1), as f(y(u)) where y(u) is de�ned
as follows:

ys;j(u) =

(
1 j = 1; : : : ; busc
us � busc j = busc + 1
0 otherwise

(3)

m(u) = max
s2S

us (4)

3

(a) (b)

1 2 3 4 5

1

2

3

1 2 3 4 5

shaded area = jIkj = 10 ; no. of rows = jSj = 3
j

s

u = [5 ; 3:5 ; 2:5] u = [3:5 ; 3:5 ; 3]
m(u) = 5 m(u) = 3:5

j
s

Figure 2: FU-pattern

If we divide a rectangular area into rows and columns
of unit width and index them with s and j respectively,
then an FU-pattern can be visualized as a shaded re-
gion of area jIkj occupying at most jSj rows. In Fig-
ure 2 (a) and (b) we show two possible FU-patterns
with jIkj = 10 and jSj = 3. The value of us is de-
noted by the area of the shaded region in row s, the
value of m(u) is the area of the widest row, and the
value of ys;j(u) is denoted by the area of the shaded
region in the corresponding (s; j) block. For example,
in Figure 2 (a), we can see y2;3(u) = 1 because it is
completely shaded, and y2;4(u) = 0:5 because half of
its area is shaded.
The cost for column j is cj , and the cost of an FU-

pattern is computed by multiplying the area of the
shaded region in each column with the correspond-
ing cost, and then summing those products. For ex-
ample, the cost of the FU-pattern in Figure 2 (a) is
3c1+2:5c2+2c3+1:5c4+ c5 where the values of cj can
be found from (2).
For our problem, we are interested in some proper-

ties satis�ed by the maximum and minimum costs of
any possible FU-pattern with m(u) = p. Formally, the
costs can be de�ned as follows:

fmax(p) = maxf f(y(u)) j u 2 U ; m(u) = pg

fmin(p) = minf f(y(u)) j u 2 U ; m(u) = p g

These maximumand minimumcosts denote bounds on
the cost of an FU-pattern u as follows:

fmax(m(u)) � f(y(u)) � fmin(m(u)) ; 8 u 2 U (5)

In the following Lemma we present some properties
satis�ed by fmax(p) and fmin(p):

Lemma 2 fmin(p) and fmax(p), p �
l
jIkj
jSj

m
, satisfy

the following properties:

fmin(p) � fmin(p
0) for p � p0 (6)

fmax(p) � fmax(p
0) for p � p0 (7)

fmin(p) > fmax(p � 1) for integer p (8)

Proof: In proving the properties above, we will view
the FU-patterns as shaded regions in the manner ex-
plained earlier in this section.

Property (6): Let u be an FU-pattern of cost fmin(p).
We will show in the following paragraph, that from u,
we can construct a new FU-pattern u0 of no greater
cost, such that m(u0) = p0, p0 � p. For the construc-
tion to be valid, the shaded region corresponding to u0

should have the same area and same number of rows
as u.

The rows in u that are wider than p0 are �rst made
narrower so that, in the new FU-pattern u0, they all
have width p0. Thus the shaded area due to these rows
will be smaller in u0 than in u. To compensate for this
decrease in area, we have to increase the width of the
rows in u that are narrower than p0. Choose one such
row at a time and make it wider (no more than p0) in
the new FU-pattern u0 until the increase in area is suf-
�cient to keep the total area the same. The remaining
rows have the same width in u and u0. For example,
the FU-pattern in Figure 2 (b) can be constructed from
Figure 2 (a) using the procedure described above.

It can be easily seen, that while constructing u0 from u,
we could have only increased the area in columns 1 to
bp0c, and could have only decreased the area in columns
higher than bp0c, while the amount of increase and the
amount of decrease were the same to keep the total area
unchanged. Since the cost of the columns increases
with the index, the cost of the new FU-pattern u0 can
be no greater than the cost of u, which is fmin(p).
Therefore, we can conclude that fmin(p0) � fmin(p).

Property (7): Consider an FU-pattern u0 of cost
fmax(p0) and then construct another FU-pattern u with
m(u) = p, p � p0 in the following way. Increase the
widest row of u0 to a width of p and then decrease the
widths of the remaining rows until the area becomes
the same. Using an argument similar as in the pre-
vious paragraph, we can conclude the cost of the new
FU-pattern u will be no less than the cost fmax(p0) of
u0. Thus fmax(p) � fmax(p0).

Property (8): First note that the values of cj as given
in (2) satisfy the following recursion:

cj =

8><
>:

0 j = 1; : : : ; l � 1

1 + jSj

j�1X
i=1

ci j � l
(9)

where l =

�
jIkj

jSj

�

Let u be an FU-pattern of cost fmin(p). Therefore,
m(u) = p, and at least one row of u has width us =
p. This implies that the area of the shaded region in
column p is at least 1, and the cost of u is at least cp.
Formally:

fmin(p) � cp (10)

It is not hard to see that fmax(p�1) can not be greater
than the cost of the FU-pattern whose shaded region
covers the entire s; j space through column p� 1. This

4

can be mathematically written as follows:

fmax(p � 1) � jSj

p�1X
i=1

ci

= cp�1 from (9)
< cp from (2)
� fmin(p) from (10)

So far, we have presented some properties of the FU-
patterns, which we will use in the next section to prove
a property satis�ed by the optimal solutions of the ex-
tended problem (Ek).

5.2 Property of the Solution of (Ek)

In this section, we present a property satis�ed by the
optimal solutions of (Ek). The main result is presented
in Proposition 2, which leads to a simple method of
computing dm�

ke.
Consider the problems (APk) and (Ek). We will use

[x;mk] and [x; y] to denote any feasible solution of
(APk) and (Ek) respectively. For any x corresponding
to a feasible solution of (APk) or (Ek), we can compute
an FU-pattern u(x) 2 U de�ned as follows:

us(x) =
X
i2Ik

xis 8 s 2 S (11)

For the sake of notational simplicity, let us de�ne:

y(x) = y(u(x)) (12)

m(x) = m(u(x)) (13)

Lemma 3 For any x, if either [x;mk] is feasible in
(APk) or [x; y] is feasible in (Ek), then [x; y(x)] is fea-
sible in (Ek) and f(y(x)) � f(y).

Proof: From the constraints of (Ek) it can be easily
veri�ed that [x; y(x)] is a feasible solution. We will
only show that the cost f(y(x)) of [x; y(x)] is no greater
than the cost f(y) of [x; y].
Consider a particular s 2 S. Let dj = ys;j(x) �

ys;j, and a = busc + 1. The values of ys;j(x) can be
found using (12), (11), and (3), and it can be seen
that dj � 0, for j = 1; : : :a � 1, and dj � 0, for j =
a+ 1; : : : �mk. Furthermore, according to (2) cj � cj+1,
j = 1; : : : ; �mk � 1. In the following we use these facts
to show that, for each row s 2 S, the di�erence in cost
between [x; y] and [x; y(x)] is no greater than zero:

�mkX
j=1

cjdj =
a�1X
j=1

cjdj + cada +
�mkX

j=a+1

cjdj

� ca

a�1X
j=1

dj + cada + ca

�mkX
j=a+1

dj

= ca

�mkX
j=1

dj

= 0

Proposition 2 Let [x�;m�
k] and [~x; ~y] be the optimum

solutions of (APk) and (Ek) respectively. Then:

dm(~x)e � dm�
ke � bm(~x)c

Proof: From Lemma 3, it can be concluded that
[x�; y(x�)] is a feasible solution of (Ek) and [~x; y(~x)]
is an optimal solution of (Ek). Therefore:

f(y(x�)) � f(y(~x)) (14)

We can compute m(x�) from (13) and (11), and it can
be easily seen that m�

k = m(x�). Since m�
k represents

the minimum number of FU's, we must have:

m(~x) � m(x�) (15)

fmax(dm(x�)e) � f(y(x�)) from (5)
� f(y(~x)) from (14)
� fmin(m(~x)) from (5)
� fmin(bm(~x)c) from (6)
> fmax(bm(~x)c � 1) from (8)

It can be easily veri�ed that m(~x) � d jIkjjSj e, which jus-

ti�es our use of (6) and (8) in the above derivation.
From the above relation we can write:

dm(x�)e > bm(~x)c � 1

� bm(~x)c

If we combine the above relation with (15) and note
that m�

k = m(x�), then we can conclude:

dm(~x)e � dm�
ke � bm(~x)c

The result presented in the above proposition will be
used in the following section to compute dm�

ke in poly-
nomial time.

6 Computing the Lower Bound dm�
ke using

the Extended Problem (Ek)

Section 4 has proven that the extended problem (Ek)
can be solved as a linear program (LP). Thus we can
compute [~x; ~y] by solving (Ek) with an LP-solver. If
m(~x) is integral, then it can be easily deduced from
Proposition 2 that dm�

ke = m(~x), giving us our desired
lower bound. If m(~x) is fractional, then there are at
most two choices for dm�

ke, namely dm�
ke or bm(~x)c.

In this case, the result can be found in the following
manner.
As explained in the proof of Proposition 2, [x�; y(x�)]

is a feasible solution of (Ek), and us(x�) � m�, 8 s 2 S.
If dm�e = bm(~x)c, then it can be concluded from (12)
that ys;j(x�) = 0, for j = bm(~x)c + 1; : : : ; �mk, 8 s 2
S. To see whether such a feasible solution exists, set
ys;j = 0, for j = bm(~x)c+1; : : : ; �mk, 8 s 2 S and solve
(Ek) one more time. If there exists a feasible solution,
then dm�

ke = bm(~x)c; otherwise dm�
ke = dm(~x)e.

The above method demonstrates that dm�
ke, the

lower bound on the number of FU's of type k, can be
computed by solving the linear program (Ek) at most
2 times.

5

Schedule Loop EXACT LBND SHARMA

Length Length (m�
k) (dm�

ke) [7]

(�; �) 17 17 (3,3) (3,3) (3,3)
(�; ~) 17 17 (3,2) (3,2) (3,2)
(�; �) 18 18 (2,2) (2,2) (2,2)
(�; ~) 18 18 (3,1) (3,1) (2,1)
(�; �) 18 16 (3,2) (3,2) (2,2)
(�; ~) 18 16 (3,1) (3,1) (2,1)
(�; �) 19 19 (2,2) (2,2) (2,2)
(�; ~) 19 19 (2,1) (2,1) (2,1)
(�; �) 19 17 (2,2) (2,2) (2,2)
(�; ~) 19 17 (2,1) (2,1) (2,1)
(�; �) 21 21 (2,1) (2,1) (2,1)
(�; ~) 21 21 (2,1) (2,1) (2,1)
(�; �) 21 19 (2,1) (2,1) (2,1)
(�; ~) 21 19 (2,1) (2,1) (2,1)

Table 1: Number of FU's for the Elliptic Wave Filter

7 Experiments and Results

We compared the accuracy of the bounds obtained by
our method against the actual schedules produced by
RPI-ILP [2], an integer programming based scheduling
algorithm. The experiments were conducted in two
steps. First, for a given schedule length, we used our
method as reported in Section 6 to compute the lower
bounds on the number of FU's. In the next step, we
constrained the number of FU's to the bounds pro-
duced in the �rst step, and then ran RPI-ILP to try to
�nd a feasible schedule with those bounds.
If RPI-ILP could �nd a feasible schedule, then

we could conclude that the bounds produced by our
method are as tight as possible. If no feasible schedule
was found (which means that one doesn't exist), then
we increased the number of FU's until RPI-ILP was
able to �nd a feasible schedule. In this case, the bound
produced by our method was not as tight as possible,
and the amount by which the number of FU's had to
be increased gives a measure looseness of the bounds
produced.
Experiments were run on the elliptical wave �lter

(ewf), and the discrete cosine transform (dct). The
results are listed in Table 1 and 2, respectively. The
bounds computed by our method are reported in the
column labeled LBND, and the number of FU's for
which a feasible schedule was found by RPI-ILP are
reported in the column labeled EXACT. Our results
are compared to the lower bound estimates produced
by applying the technique of [7], which are reported un-
der the heading SHARMA [7]. In these examples, FU
� (adder/subtractor) was assumed to take one control
step, FU � (multiplier) was assumed to take two control
steps, and FU ~ (pipelined multiplier) was assumed to
have a latency 1.
For ewf, the bounds on the number of FU's produced

by our method (LBND) were as tight as possible in all
cases (i.e. RPI-ILP could �nd feasible schedules that
satisfy the bounds with equality). For dct, the bounds
were as tight as possible in all cases except the one
in row 2 of Table 2, where our bound is o� by one
adder/subtractor from the exact design. It can also be

Schedule EXACT LBND SHARMA

Length (m�
k) (dm�

ke) [7]

(�; ~) 7 (6,5) (6,5) (6,4)
(�; ~) 7 (8,4) (7,4)
(�; ~) 8 (5,4) (5,4) (4,4)
(�; ~) 9 (4,3) (4,3) (4,3)

Table 2: Number of FU's for the Discrete Cosine Transform

seen from the tables that our bounds are consistently
tighter than those generated by the algorithm reported
in [7].
To demonstrate how our algorithm considers interde-

pendencies between the bounds, consider Table 2. For
a schedule length of 7, there exists two design points
(6,5) and (8,4) as was veri�ed by running RPI-ILP.
In this case, our method produced two sets of bounds
(6,5) and (7,4), one for each design point, whereas pre-
vious techniques like the algorithm in [7] considers the
bound on each type of FU as independent of the other
and produced only one set of bounds (6,4).

8 Summary and Future Work

In this paper we have presented a formal description
of the lower-bounding problem that produces tighter
bounds on FU's than existing methods, and considers
the interdependencies of the bounds on di�erent FU-
types. Although the problem is not directly solvable in
polynomial time, we have presented an extended prob-
lem that can be solved in polynomial time and can be
used to indirectly �nd the same bounds as the original
problem.
Our formulation assumes that each FU can accept

one operator at every control step. When the FU's
have a latency greater than 1, each multicycle oper-
ator is considered as a combination of many unicycle
operators. However, it can not be ensured that the
unicycle components belonging to the same multicy-
cle operator are allocated in consecutive control steps
of the same FU. This might a�ect the tightness of the
bound produced. A polynomial time solution of a more
general formulation is yet to be found.

References

[1] Samit Chaudhuri and Robert A. Walker. Computing Lower
Bounds on Functional Units before Scheduling. Technical Report
94{6, CS Dept, Rensselaer Polytechnic Institute, March 1994.

[2] Samit Chaudhuri, Robert A. Walker, and John Mitchell. The
Structure of Assignment, Precedence and Resource Constraints
in the ILP Approach to the Scheduling Problem. In IEEE Inter-
national Conference on Computer Design, pages 25{29, 1993.

[3] Catherine H. Gebotys and Mohamed I. Elmasry. Optimal VLSI
Architectural Synthesis. Kluwer Academic Publishers, 1991.

[4] Cheng-Tsung Hwang, Jiahn-Hurng Lee, and Yu-Chin Hsu. A
Formal Approach to the Scheduling Problem in High Level Syn-
thesis. IEEE Trans. on Computer-Aided Design, 10(4):464{475,
April 1991.

[5] Rajiv Jain, Alice Parker, and Nohbyung Park. Predicting
System-Level Area and Delay for Pipelined and Nonpipelined
Designs. IEEE Trans. on Computer-Aided Design, 11(8):955{
965, Aug 1992.

[6] George L. Nemhauser and Laurence A. Wolsey. Integer and
Combinatorial Optimization. John Wiley & Sons, 1988.

[7] Alok Sharma and Rajiv Jain. Estimating Architectural Re-
sources and Performance for High-Level Synthesis Applications.
IEEE Trans. on VLSI Systems, 1(2):175{190, Jun 1993.

[8] J. D. Ullman. NP-Complete Scheduling Problems. J. Comput.
System Sci, 10(10):384{393, 1975.

6

