
An Exact Methodology for Scheduling in a 3D Design Space�

Samit Chaudhuri y Stephen A. Blythe z Robert A. Walker zy

Rensselaer Polytechnic Institute
Troy, NY 12180

Abstract

This paper describes an exact solution methodology, im-
plemented in Rensselaer’s Voyager design space explo-
ration system, for solving the scheduling problem in a 3-
dimensional (3D) design space: the usual 2D design space
(which trades off area and schedule length), plus a third di-
mension representing clock length. Unlike design space ex-
ploration methodologies which rely on bounds or estimates,
this methodology is guaranteed to find the globally optimal
solution to the 3D scheduling problem. Furthermore, this
methodology efficiently prunes the search space, eliminat-
ing provably inferior design points through: (1) a careful
selection of candidate clock lengths, and (2) tight bounds on
the number of functional units of each type or on the sched-
ule length.

1 Introduction

In high-level synthesis, the process of solving the schedul-
ing problem can be viewed as the process of exploring a
2-dimensional (2D) design space, with axes representing
time (schedule length) and area (ideally total area, but of-
ten simplified to functional unit area). In reality, however,
this 2D design space is only a small part of a much larger
design space. One such larger design space is presented
by De Micheli in [15], and is illustrated in Figure 1. Here
the design space for high-level synthesis is viewed as a 3-
dimensional (3D) space, with axes not only representing
schedule length and area, but clock (cycle) length as well.

A typical scheduling algorithm explores only one 2D slice
of this larger 3D design space – the 2D slice correspond-
ing to a fixed clock length chosen a priori by the designer.
This clock length depends on many factors, including the
delays of the functional units, storage elements, glue logic,
and wiring, as well as clock skew. Some of those values are
unknown before scheduling, and can therefore only be esti-
mated at this stage in the design process.

Given this lack of detailed information, the designer is
forced to make an ad hoc and frequently arbitrary guess at
the clock length, unfortunately eliminating an entire dimen-
sion of the search space. Thus even an optimal scheduler
will explore only that one 2D slice of the design space, and
will produce a schedule that is optimal only for that one
clock length. A better schedule may exist for a different
clock length, but that better schedule will not be found.

To motivate the need to explore this larger design space,
consider the problem of scheduling the well-known Elliptic
Wave Filter [23, p.206] (EWF) benchmark, under a variety

�This material is based upon work supported by the National Science Foundation
under Grant No. MIP-9211323.

yDept. of Electrical, Computer, and Systems Engineering
zDepartment of Computer Science.

Schedule Length

A
re

a

Clo
ck

 L
en

gth

Figure 1: The Larger 3-Dimensional (3D) Design Space

3 Mult, 3 Add 2 Mult, 2 Add 1 Mult, 2 Add
Clock Csteps ns Csteps ns Csteps ns
163 14 2282 16 2608 16 2608
82 17 1394 18 1476 21 1722
55 21 1155 22 1210 29 1595
48 25 1200 26 1248 37 1776
24 46 1104 48 1152 66 1584

Table 1: Resource-Constrained Scheduling Results for the EWF

of resource constraints, to find the fastest possible schedule.
Assume that the VDP100 module library [16, 24] is used,
which has a multiplication delay of 163ns, and an addition
delay of 48ns.

Forced to choose a clock length for the scheduling algo-
rithm to use, the designer would probably choose either a
clock length of 48ns or 163ns – the execution delay of either
addition or multiplication. Given those clock lengths, an op-
timal scheduler that supports multi-cycle operations (such as
the ILP-based scheduler [5] in our Voyager design space ex-
ploration system) would produce the results shown on the
lines labeled “48” and “163” in Table 1.

Now consider the other lines of Table 1, which represent
other, perhaps less obvious, choices for the clock length. For
each resource constraint, the fastest design corresponds to
a clock length of 24ns – a design that would not be found
by a scheduling methodology limited by ad hoc guesses. 1

Thus it is important to explore a number of candidate clock
lengths to find the globally optimal solution.

This paper presents an exact solution methodology, im-
plemented in the Voyager design space exploration system,
to find the globally optimal solution to the scheduling prob-
lem in this 3D design space. This methodology makes the
problem tractable through: (1) careful pruning of provably
inferior points from the design space, and (2) provably effi-
cient exact algorithms for solving the individual problems.

1Of course, this small clock length also results in a larger number of control steps,
and thus a larger and more complex control unit. However, note that a clock length of
55ns – more comparable to the ad hoc guesses – results in a schedule almost as fast as
the one corresponding to a 24ns clock, and faster than those corresponding to the ad
hoc guesses.

8th Int. Symp. on System Synthesis Cannes, France, September 1995



Time-Constrained 3D Scheduling (TCS-3D):
read in DFG, module library, and time constraint
compute minimal set of candidate clock lengths
for each clock length

perform Time-Constrained Scheduling (TCS)
end
present the results to the user for evaluation

Time-Constrained Scheduling (TCS):
compute tight lower bounds on the number of functional

units of each type
use these lower bounds as resource constraints, and solve

TRCS as a decision problem
while no feasible schedule is found

increase the resource constraints
solve TRCS as a decision problem

end

Figure 2: Voyager’s Time-Constrained 3D Scheduling (TCS-3D)
Methodology

2 Methodology Overview

This paper presents two methodologies to solve the clock
determination and scheduling problem, that are guaranteed
to find the globally optimal design, and that are far more ef-
ficient than an exhaustive search of the design space. One
methodology solves the Time-Constrained 3D Scheduling
(TCS-3D) problem (Figure 2), while the other solves the
Resource-Constrained 3D Scheduling (RCS-3D) problem
(Figure 3). Both methodologies are implemented in Rens-
selaer’s Voyager design space exploration system.

The core of each methodology is roughly the same – each
methodology computes a set of candidate clock lengths, and
then, for each candidate clock length, optimally solves the
scheduling problem. However, a straightforward imple-
mentation of this core methodology takes much too long to
solve, even for small benchmarks. Thus it is important to
(1) solve the scheduling problem for only a small, provably
minimal set of candidate clock lengths, and (2) solve the
scheduling problems as efficiently as possible so that an op-
timal solution is found in a reasonable amount of time.

Since the search spaces for the TCS and RCS prob-
lems are each larger than that of the TRCS problem, these
methodologies solve the TCS and RCS problems by gener-
ating the missing constraints, in effect converting each into
an easier-to-solve TRCS problem. For the TCS problem, the
methodology computes constraints on the number of func-
tional units of each type; for the RCS problem, it computes
a time constraint on the length of the schedule. Since these
constraints can also be found efficiently, the entire method-
ology is efficient.

2.1 Time-Constrained 3D Scheduling (TCS-3D)
Voyager’s methodology for solving the time-constrained 3D
scheduling problem is outlined in Figure 2. This methodol-
ogy begins by reading in the data flow graph (DFG), the exe-
cution delays for the relevant functional units in the module
library, and the overall time constraint.

The minimal set of candidate clock lengths is then deter-
mined (see Section 3), based on the execution delays of the
relevant functional units in the module library. For the EWF
and the module library described earlier, 10 candidate clock
lengths would be generated. For each of these clock lengths,

Resource-Constrained 3D Scheduling (RCS-3D):
read in DFG, module library, and resource constraints
compute minimal set of candidate clock lengths
for each clock length

perform Resource-Constrained Scheduling (RCS)
end
present the results to the user for evaluation

Resource-Constrained Scheduling (RCS):
compute a tight lower bound on the schedule length
use this lower bound as a time constraint, and solve TRCS

as a decision problem
while no feasible schedule is found

increase the time constraint
solve TRCS as a decision problem

end

Figure 3: Voyager’s Resource-Constrained 3D Scheduling (RCS-
3D) Methodology

time-constrained scheduling is then performed, and the re-
sults are presented to the user for evaluation.

To solve the TCS problem efficiently, Voyager’s ILP for-
mulation of the TRCS problem (described in Section 4) is
used as follows. First, tight lower bounds on the number of
functional units of each type are computed (using a method
sketched out in Section 5). These bounds are then used as re-
source constraints, and the TRCS problem is solved as a de-
cision problem. If TRCS produces a feasible schedule, then
that schedule is guaranteed to be optimal; if not, the resource
constraints are increased, and this process is repeated.

This TCS-3D solution methodology is relatively efficient
for the following reasons. First, the functional unit lower
bounds can be computed in polynomial time, by solving at
most two Linear Programs (LPs). Second, TRCS is solved
as a decision problem, rather than an optimization problem,
using a formulation that is well-structured, and requires few,
if any, branches in a branch-and-bound search [5]. Finally,
the functional unit lower bounds are highly accurate [4] (in
almost every case they lead immediately to a feasible so-
lution), so in practice the lower bounds seldom have to be
increased to solve TRCS again. Thus the TCS-3D problem
can be solved quickly, even for medium-sized benchmarks
(see Section 7).

The efficiency of the methodology can be further in-
creased if the goal is to find the schedule with the fewest
number of functional units. In this case, before each TCS
problem is solved as a TRCS problem, the FU lower bounds
are compared to the number of FUs required in the best pre-
vious schedule. If the new bounds are smaller, then the
TRCS problem is solved as explained above; if the new
bounds are larger, then there is no need to solve the TRCS
problem since it would require more functional units than
the best solution found so far.

2.2 Resource-Constrained 3D Scheduling (RCS-3D)
Voyager’s methodology for solving the resource-
constrained 3D scheduling problem is similar (see Figure 3).
This methodology reads in a resource constraint, and gener-
ates a minimal set of candidate clocks using the clock length
determination algorithm described in Section 3. For each of
these clock lengths, resource-constrained scheduling is then
performed.

2



To solve the RCS problem efficiently, Voyager’s ILP for-
mulation of the TRCS problem (Section 4) is used as fol-
lows. First, a tight lower bound on the overall length of the
schedule is computed (Section 6). This bound is then used
as a time constraint, and the TRCS problem is solved as a de-
cision problem. If TRCS produces a feasible schedule, then
that schedule is guaranteed to be optimal; if not, the time
constraint is increased, and this process is repeated. The
RCS problem can be solved quickly, even for medium-sized
benchmarks (see Section 7).

The efficiency of the methodology can be further in-
creased if the goal is to find the shortest schedule. In
this case, before each RCS problem is solved as a TRCS
problem, the schedule length lower bound is compared to
the length of best previous schedule. If the new bound
is smaller, then the TRCS problem is solved as explained
above; if the new bound is larger, then there is no need to
solve the TRCS problem since it would result in a longer
schedule than the best solution found so far.

2.3 Advantages of this Solution Methodology
In summary, Voyager’s exact solution methodology has a
two-fold advantage over previous methodologies: (1) guar-
anteed optimal results, and (2) solution techniques based on
efficient pruning of the search space.

Unlike other design space exploration methodologies
which rely on bounds or estimates to make the problem
tractable, this methodology generates the minimal set of
candidate clock lengths that could possibly correspond to
the optimal design, and then optimally solves either the TCS
or RCS problem for each of those clock lengths. Thus it is
guaranteed to find the globally optimal result.

Furthermore, although this methodology may appear at
first glance to perform exhaustive scheduling, in reality it
is quite efficient for three reasons. First, a minimal set of
candidate clock lengths is generated, and scheduling is per-
formed for only those few values. Second, instead of di-
rectly solving the TCS or RCS problem, the missing con-
straints are generated, converting that problem into a TRCS
problem with a smaller search space; moreover, those con-
straints are tight, and are also generated efficiently. Finally,
a TRCS formulation is used that was carefully designed and
is well-structured [5], and therefore usually finds an optimal
solution with few branches.

3 Determining Candidate Clock Lengths

One of the most important parameters needed by any
scheduling algorithm is the length of the system clock.
However, determining this clock length requires a detailed
analysis of the clock skew, wire delays, glue logic de-
lays, setup and propagation delays of the storage elements,
etc. [1] – quantities largely unknown during high-level syn-
thesis. Fortunately, although such a detailed analysis is nec-
essary later in the design process, it is not needed during
high-level synthesis, where only the macroscopic structure
of the circuit is determined.

One appropriate model of the clock length during high-
level synthesis is presented by Chaiyakul and Gajski in [3].
Here the clock length is assumed to have 3 components: dat-
apath delay, control delay, and wire delay. Of these three, the
control delays and the wire delays cannot be meaningfully

estimated before scheduling, but fortunately those delays do
not play a major role in the scheduling problem (because
resource utilization in the datapath is primarily affected by
the delays of the datapath units). Thus for scheduling, we
use only the datapath delays to determine the clock length,
and we ignore the control and wire delays, realizing that the
actual clock length (determined later) will be longer due to
those delays. Furthermore, these operation execution de-
lays are computed assuming a bus-based architecture with a
point-to-point interconnection topology, meaning there ex-
ists only one bus between any two functional unit and/or
storage unit ports.
Definition 1 Let ts and tp be the setup time and propaga-
tion delay of the registers, and let t. be the delay of a tri-
state driver. If the delay of a functional unit of type k is de-
noted as delay (k), the execution delay dk for a register-to-
register transfer executing an operation of type k is given
as:

dk = ts + tp + 2t. + delay (k)

Throughout the remainder of this section, the set D will be
used to denote the set of all dk’s found in the given DFG.

Before discussing Voyager’s methodology for determin-
ing candidate clock lengths, it is necessary to have a measure
of the quality of one clock length with respect to other clock
lengths for a particular operation. One such measure that is
commonly used is operation slack, defined as follows:
Definition 2 For a given clock length c, the slack sk of an
operation of type k is given by:

sk(c) = c � ddk=ce � dk

Voyager’s methodology determines a minimal set of can-
didate clock lengths in a range [c; �c]. This range is bounded
by c, the minimum clock length possible for implementing
the design’s controller. One of the goals of the Voyager’s 3D
design space exploration methodology is to find the minimal
set of non-inferior clock lengths c� in this range that need to
be examined in order to find the globally optimal solution.

Unfortunately, the clock determination problem is usually
ignored in favor of ad hoc decisions or estimates, which, as
demonstrated later, can ignore much of the design space and
lead to an inferior design. For example, several previous
clock estimation schemes [19, 11] use the delay of the slow-
est functional unit as the estimated clock length. A more re-
alistic approach is used in [16], in which a contiguous range
of integer candidate clock lengths is heuristically evaluated
in an attempt to provide some guidance as to the “best” clock
length to choose.

However, all of these approaches choose the clock length
before, and independent of, scheduling. Thus they are at
best estimates, since it is never possible to guarantee that a
better schedule with a different clock length does not exist.
Therefore it may seem at first that the globally optimal solu-
tion to the 3D scheduling problem cannot be found without
optimally solving the scheduling problem for every possible
clock length – a prohibitively expensive exhaustive search.

Fortunately, this exhaustive search is not necessary.
In [7], Corazao et al. combined clock length determination
with the problem of operation template matching, and made

3



some suggestions to reduce the number of candidate clock
lengths. However, the number of candidate clock lengths
can be reduced even further, as shown in our Theorem 1 be-
low (a similar observation was made by Chen et al. in [6],
but presented without proof).

The following theorem shows that only certain clock
lengths in the range [c; �c] must be explored to find the glob-
ally optimal clock length c�, when chaining is not consid-
ered, and when clock lengths are not assumed to be integers:
Theorem 1 c� integrally divides at least one of the register
transfer delays. More formally, sk(c�) = 0 for at least one
k 2 K.
Proof: Consider any clock period c such that sk(c) > 08 k,
and an optimal basic schedule generated using c as the clock
length. We will show that c is not optimal because there can
be found another clock period c0, that leads to a faster sched-
ule with the same number of functional units and csteps as
the original schedule.

Let � = mink2Kfsk(c)=ddk=ceg. The new clock pe-
riod c0 can then be found as c0 = c � �. Using the defini-
tion of sk(c) (Definition 2), the value of c0 can be derived
as maxk2Kfdk=ddk=ceg, which can be substituted for c0 in
ddk=c

0e giving:

ddk=c
0e = mink2Kfddk=ceg � ddk=ce

Furthermore, since c0 � c, it also follows that ddk=c0e �
ddk=ce. These two relations imply ddk=c

0e = ddk=ce, i.e.,
each register transfer takes the same number of control steps
with the new clock c0 as with the original clock c.

Hence the original schedule will still be valid with the
new clock c0. However, c0 being less than c, will result in a
faster execution time, while the number of csteps and func-
tional units remain the same.
Corollary 1 When using integer clock lengths, any non-
integer clock c generated through application of theo-
rem 1 can be replaced by c0 = dce. More formally,
bsk(c

0)=ddk=c
0ec = 0 for at least one k 2 K.

In summary, Theorem 1 and Corollary 1 give a method
for determining a small set of candidate clock lengthsCK,
that provably contains the optimum clock length c�. This set
is computed as CK = div(D), where div(D) denotes the
ceilings of all integral divisors of the delays dk that fall in
the range [c; �c]. In practice, the size of CK is less than 10%
of that of the integer range [c; �c].

Similar theorems can be developed for a scheduler that
supports chaining, or a scheduler that supports operation
templates. However, those theorems are not presented here
due to lack of space.

4 Optimally Solving the Scheduling Problem

In high-level synthesis, the basic scheduling problem is the
problem of determining the control step in which each op-
eration will execute. After a careful formal analysis of
the scheduling problem [5], we were able to develop well-
structured Integer Linear Programming (ILP) formulations
of the scheduling problems, in particular the TRCS problem.

Voyager’s formulation of the TRCS problem can be sum-
marized as follows. If foi j i 2 Ig denotes the set of all op-
erations, and Si denotes the schedule interval [asapi; alapi]
for operation oi, then binary variables xi;s, s 2 Si can be

used to indicate whether or not operation oi is scheduled in
cstep s. In any feasible schedule, the values of these vari-
ables must satisfy three types of constraints: (1) assignment
constraints (A), which ensure that each operation is sched-
uled onto exactly one cstep; (2) precedence constraints (P),
which ensure that each operation is always scheduled af-
ter all of its predecessors; and (3) resource constraints (R),
which ensure that the schedule does not use more than the
available number of functional units of each type.

The TRCS problem is the problem of determining
whether or not a feasible schedule exists that satisfies these
constraints, and can be written succinctly as:

min f0Tx jMax = 1 ; Mtx � 1 ; Mrx �m ; x integerg

where0 is a vector of zeros, andMa,Mt andMr are the co-
efficient matrices due to the assignment constraints, prece-
dence constraints, and resource constraints, respectively.
Further details on Voyager’s scheduling ILP formulations
can be found in [5].

5 Bounding the Number of Functional Units

As discussed earlier in Section 2, it is important to generate
tight lower bounds on the number of functional units (FUs)
of each type, so that those bounds can be used as resource
constraints to convert the TCS problem into an easier-to-
solve TRCS problem. Furthermore, those bounds must be
computed efficiently, preferably with a polynomial-time al-
gorithm.

This functional unit lower-bounding problem can be
viewed as a relaxation of the functional unit minimization
problem. Unfortunately, there are many possible relaxations
of that problem, and therefore many possible functional unit
lower-bounding problems. Ideally, we would like to find the
tightest bounds of all possible relaxations, but with an effi-
cient solution methodology.

One approach to forming the FU lower-bounding prob-
lem from the FU minimization problem is to relax the
precedence constraints between operations. Other than our
work [4], we are aware of only two methodologies to com-
pute FU lower bounds in this manner – the relaxations con-
sidered by Jain [12] (and a similar relaxation in [13]), and
the tighter relaxations in [22, 18, 10], and [20] based on a
method originally proposed by Fernández and Bussell in [8,
Theorem 1].

Our work, described more fully in [4], takes a different
approach. We start with a formal description of the FU min-
imization problem, which finds the minimum value mk of
the number of functional units of type k 2 K. We then re-
lax this problem to form a generic description of an entire
class of FU lower-bounding problems (the problems above
are special cases of this generic class). Finally, we select
the one lower-bounding problem that produces the tightest
possible bound, and solve that problem. Thus our approach
formalizes an entire class of FU lower-bounding problems,
and is guaranteed to produce the tightest possible bounds. In
practice, we have verified that the bounds produced are ex-
act in most cases.

Furthermore, the solution to this functional unit lower-
bounding problem can be found by solving at most two LP’s
(which can be done in polynomial time). Thus we have de-
veloped a functional unit lower-bounding methodology [4]

4



that is guaranteed to produce the tightest bounds of all pos-
sible precedence relaxations and that does so in polynomial
time, even though our original formulation was an ILP for-
mulation.

6 Bounding the Length of the Schedule

The previous section briefly described Voyager’s method to
generate tight lower bounds on the number of functional
units, so that the search space for TCS problem could be re-
duced to solve that problem more efficiently, as described in
Section 2. This section presents a similar method to gener-
ate a tight lower bound on the schedule length, so that the
RCS problem can be solved more efficiently.

One early formulation of the schedule length lower-
bounding problem in presence of resource constraints is pre-
sented in [12]; however, the bounds produced by that ap-
proach are very loose. More recent algorithms that produce
tighter bounds are those in [21] and [20], based on Jackson’s
earliest deadline rule (ED-Rule) [2], and those in [22] and
[10], based on a theorem originally given by Fernández and
Bussell in [8, Theorem 2]. Furthermore, those algorithms
can be applied iteratively (Hu et al. apply Fernández’ The-
orem 2 in [9], and Langevin applies ED-Rule in [14]), pro-
ducing even tighter bounds, although at the cost of increased
algorithmic complexity.

Our investigations into this problem have shown that we
can relax our ILP formulation of the RCS problem to form
a generic description of an entire class of schedule length
lower-bounding problems, in much the same manner as we
did for FU lower-bounding. As with functional unit lower-
bounding, we select the one lower-bounding problem that
produces the tightest possible bound (the problems above
are special cases of this generic class), and solve that prob-
lem. Thus our approach formalizes an entire class of sched-
ule length lower-bounding problems, and is guaranteed to
produce the tightest bound of all possible precedence relax-
ations in polynomial time.

7 Experimental Results

To demonstrate the accuracy and performance of Voy-
ager’s 3D scheduling methodology, we conducted a series
of experiments using the well-known Elliptic Wave Fil-
ter (EWF) [23, p.206] and Discrete Cosine Transform [17]
(DCT) benchmarks. We used the VDP100 module library
from [16, 24], giving a datapath delay of 48ns for addition,
56ns for subtraction, and 163ns for multiplication. For each
benchmark, we performed Time-Constrained 3D Schedul-
ing (TCS-3D) and Resource-Constrained 3D Scheduling
(RCS-3D) using the methodologies presented in Section 2.

7.1 Elliptic Wave Filter (EWF)
The TCS-3D results for the EWF are presented in Table 2.
They show, for each of two time constraints, those clock
lengths from the candidate set that lead to a feasible schedule
(the other clock lengths lead to infeasible schedules regard-
less of the number of functional units available).

For a time constraint of 1394ns, three clock lengths (55ns,
48ns, and 24ns) led to the minimum number of functional
units. Of these, the schedule for the 55ns clock (ddmult=3e)
requires the fewest control steps (and thus potentially a

Time
Clock Csteps ns (Mult, Add)

Time Constraint = 1394ns
82 17 1394 (3, 3)
55 25 1375 (2, 2)
48 29 1392 (2, 2)
24 58 1392 (2, 2)
Time Constraint = 1035ns (tightest)
24 43 1032 (4, 3)

Table 2: EWF – TCS-3D Results

ASAP 1 *, 2 + 2 *, 2 + 3 *, 3 +
Clock Cs ns Cs ns Cs ns Cs ns
163 14 2282 16 2608 16 2608 14 2282
82 17 1394 21 1722 18 1476 17 1394
55 20 1100 29 1595 22 1210 21 1155
48 23 1104 LB 1632 26 1248 25 1200
41 34 1394 LB 1599 LB 1230 LB 1189
33 37 1221 LB 1617 LB 1221 LB 1190
28 40 1120 LB 1596 44 1232 42 1176
24 43 1032 66 1584 48 1152 46 1104
21 57 1197 LB 1596 LB 1155 LB 1113
19 60 1140 LB 1596 LB 1159 LB 1121

Table 3: EWF – RCS-3D Results

smaller controller), so would be preferable. Note that the
48ns clock – one of the “obvious” ad hoc guesses (dadd) –
may require an additional multiplier.

To find the fastest possible design, the critical path length
was used to derive the tightest possible time constraint of
1035ns. For this time constraint, only one clock length –
24ns – led to a feasible schedule, and thus to the guaranteed
fastest design.

The RCS-3D results for the EWF are shown in Table 3.
Some schedule lengths of interest are shown in boldface, and
those that were lower-boundedby the RCS-3D methodology
are shown in gray along with the lower-bounded schedule
length. As described in Section 2.2, the TRCS problem was
not solved for those clock lengths, since each would result in
a schedule that was longer than the shortest schedule found
for the previous clock lengths.

The 55ns and 24ns clock lengths correspond to the fastest
schedules. Again, it is interesting to note that neither
of these clock lengths is an obvious ad hoc guess (55 is
ddmult=3e, and 24 is both ddmult=7e and ddadd=2e), which
means that the fastest schedule might be missed using more
conventional methodologies. Furthermore, although the
clock length of 24ns would correspond to a larger number
of control steps (and perhaps a larger controller), that small
clock length does result in the overall fastest schedule, be-
cause the small clock granularity tends to reduce the opera-
tion slack.

7.2 Discrete Cosine Transform (DCT)
The TCS-3D results for the DCT are presented in Table 4.
The first set of results are for a time constraint of 500ns,
corresponding to a design will run at 2MHz. Eight clock
lengths produced feasible schedules, but only one – 24ns
– led to the minimum number of functional units. To find
the fastest possible design, the critical path length was used
to derive the tightest possible time constraint of 434ns, and
only one clock length – 24ns – led to a feasible schedule and
thus to the guaranteed fastest design.

The RCS-3D results for the DCT are presented in Ta-
ble 5. The 56ns clock length (dsub) corresponds to the
fastest schedule.

5



Time
Clock Csteps ns (Mult, Add, Sub)

Time Constraint = 500ns (2MHz)
56 8 448 (11, 7, 4)
55 9 495 (15, 5, 6), (13, 6 4)
48 10 480 (16, 5, 6)
33 15 495 (11, 7, 4), (15, 5, 4)
28 17 476 (11, 7, 4), (15, 5, 4)
24 20 480 (11, 4, 4)
21 23 483 (11, 7, 4), (15, 5, 4)
19 26 494 (11, 5, 4), (15, 7, 4)

Time Constraint = 434ns (tightest)
24 18 432 (16, 5, 6)

Table 4: DCT – TCS-3D Results

5 Mult, 3 Add, 2 Sub
Clock Csteps ns
163 9 1467
82 10 820
56 14 784
55 LB 825
48 LB 816
41 LB 820
33 LB 792
28 28 784
24 LB 792
21 LB 798
19 LB 798

Table 5: DCT – RCS-3D Results

7.3 Methodology Run Times
Voyager’s design space exploration methodologies consists
of three main tasks: computing the minimal set of candi-
date clock lengths, computing tight bounds on the number
of functional units or on the schedule length, and solving the
TRCS problem. The minimal set of candidate clock lengths
can be computed quickly, and the bounds can be computed
by solving at most two linear programs in polynomial time,
as discussed in Sections 5 and 6. Finally, the TRCS formu-
lation used in Voyager was carefully constructed and is well-
structured, meaning that it converges on the optimal solution
faster than an arbitrary formulation.

To motivate the need for solving the TCS or RCS prob-
lem by first computing bounds and then solving the resulting
TRCS problem, consider the result of solving the TCS prob-
lem directly for a time constraint of 1394ns and a 24ns clock
on the EWF benchmark. Even with a well-structured formu-
lation such as Voyager’s, solving this problem directly took
over an hour of CPU time (using LINDO on a Sun SPARC-
station 2). In contrast, we spent only 1.51 sec to compute
the lower bounds on the number of functional units, and only
7.75 sec to solve the TRCS problem – solving the same prob-
lem in two orders of magnitude less time!

On a larger benchmark – the DCT – for a time constraint
of 500ns and a 24ns clock, we spent 8.28 sec to compute the
lower bounds on the number of functional units, and 2.62
sec to solve the TRCS problem. Again, directly solving the
TCS problem for this case took over an hour.

In general, the best designs for each example were gener-
ated within seconds. However, for very small clock lengths
(e.g. 19ns), the ILP for the TRCS problem becomes quite
large, and in some cases would have taken hours to find the
exact solution. Fortunately, even in those cases the bounds
were produced fairly quickly, and could often obviate the
need to solve the TRCS problem for those clock lengths as
described in Sections 2.1 and 2.2.

8 Summary

This paper has defined a new problem – the 3D scheduling
problem – and has presented an exact solution methodology
to solve that problem without resorting to a time-consuming
exhaustive search. This solution methodology is exact – it
is guaranteed to find the optimal clock length and schedule.
Furthermore, it is efficient – it prunes inferior points in the
design space through a careful selection of candidate clock
lengths (an important design parameter too often determined
by guesswork or estimates), and through tight bounds on the
number of functional units or the length of the schedule.

References
[1] H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-

Wesley VLSI systems series. Addison-Wesley, Reading, MA, USA, 1990.
[2] J. Blażewicz. Simple Algorithms for Multiprocessor Scheduling to Meet Dead-

lines. Information Processing Letters, 6(5):162 – 164, Oct. 1977.
[3] V. Chaiyakul, A. C.-H. Wu, and D. D. Gajski. Timing Models for High Level

Synthesis. In [25], pages 60–65.
[4] S. Chaudhuri and R. A. Walker. Computing Lower Bounds on Functional Units

before Scheduling. In Proc. of the 7th International Symposium on High-Level
Synthesis, pages 36–41, Niagara-on-the-Lake, Canada, May 18-20 1994. IEEE
Computer Society Press.

[5] S. Chaudhuri, R. A. Walker, and J. E. Mitchell. Analyzing and Exploiting the
Structure of the Constraints in the ILP Approach to the Scheduling Problem.
IEEE Transactions on VLSI Systems, 2(4):456–471, Dec. 1994.

[6] L.-G. Chen and L.-G. Jeng. Optimal Module Set and Clock Cycle Selection for
DSP Synthesis. In Proc. of 1991 IEEE International Symp. on Circuits and Sys-
tems., pages 2200–2203, Singapore, June 11-14 1991. IEEE Computer Society
Press.

[7] M. Corazao, M. Khalaf, L. Guerra, M. Potkonjak, and J. M. Rabaey. Instruction
Set Mapping for Performance Optimization . In Proc. of the IEEE/ACM Inter-
national Conference on Computer-Aided Design, pages 518–521, Santa Clara,
California, Nov. 7-11 1993. IEEE Computer Society Press.

[8] E. B. Fernández and B. Bussell. Bounds on the number of Processors and Time
for Multiprocessor Optimal Schedule. IEEE Transactions on Computers, C-
22(8):745–751, Aug. 1973.

[9] Y. Hu and B. S. Carlson. Improved Lower Bounds for the Scheduling Optimiza-
tion Problem. In Proc. of 1994 IEEE International Symp. on Circuits and Sys-
tems., pages 295–298, London, England, May 30-June 2 1994. IEEE Computer
Society Press.

[10] Y. Hu, A. Ghouse, and B. S. Carlson. Lower Bounds on the Iteration Time and
the number of Resources for Functional Pipelined Data Flow Graphs. In [26],
pages 21–24.

[11] R. Jain, A. C. Parker, and N. Park. Module Selection for Pipeline Synthesis. In
Proc. of the 25th ACM/IEEE Design Automation Conf., pages 542–547, Ana-
heim, California, June 12-15 1988. IEEE Computer Society Press.

[12] R. Jain, A. C. Parker, and N. Park. Predicting System-Level Area and Delay for
Pipelined and Nonpipelined Designs. IEEE Transactions on Computer-Aided
Design, 11(8):955–965, Aug. 1992.

[13] K. Küçükçakar. System-Level Synthesis Techiques with Emphasis on Partition-
ing and Design Timing. PhD thesis, Electrical Engineering – Systems Depart-
ment, University of Southern California, 1991.

[14] M. Langevin and E. Cerny. A Recursive Technique for Computing Lower-
Bound Performance of Schedules. In [26], pages 16–20.

[15] G. D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill se-
ries in electrical and computer engineering. McGraw-Hill, New York, NY, USA,
1994.

[16] S. Narayan and D. D. Gajski. System Clock Estimation based on Clock Slack
Minimization. In [25], pages 66–71.

[17] J. A. Nestor and G. Krishnamoorthy. SALSA: A New Approach to Schedul-
ing with Timing Constraints. IEEE Transactions on Computer-Aided Design,
12(8):1107–1122, Aug. 1993.

[18] S. Y. Ohm, F. J. Kurdahi, and N. Dutt. Comprehensive Lower Bound Estimation
from Behavioral Descriptions. In Proc. of the IEEE/ACM International Confer-
ence on Computer-Aided Design, pages 182–187, San Jose, California, Nov. 6-
10 1994. IEEE Computer Society Press.

[19] N. Park and A. C. Parker. Synthesis of Optimal Clocking Schemes. In Proc. of
the 23rd ACM/IEEE Design Automation Conf., pages 454–460, Las Vegas, June
1986. IEEE Computer Society Press.

[20] J. M. Rabaey and M. Potkonjak. Estimating Implementation Bounds for Real
Time DSP Application Specific Circuits. IEEE Transactions on Computer-
Aided Design, 13(6):669–683, June 1994.

[21] M. Rim and R. Jain. Lower-Bound Performance Estimation for the High-Level
Synthesis Scheduling Problem. IEEE Transactions on Computer-Aided Design,
13(4):451–458, Apr. 1994.

[22] A. Sharma and R. Jain. Estimating Architectural Resources and Performance
for High-Level Synthesis Applications. IEEE Transactions on VLSI Systems,
1(2):175–190, June 1993.

[23] D. E. Thomas, E. D. Lagnese, R. A. Walker, J. A. Nestor, J. V. Rajan, and R. L.
Blackburn. Algorithmic and Register Transfer Level Synthesis: The System Ar-
chitect’s Workbench. Kluwer Academic Publishers Group, 101 Philip Drive,
Assinippi Park, Norwell, MA 02061, 1990.

[24] VLSI Technologies Inc. VDP100 1.5 Micron CMOS Datapath Cell Library,
1988.

[25] Proc. of the European Design Automation Conference (EuroDAC), Hamburg,
Germany, Feb. 1992. IEEE Computer Society Press.

[26] Proc. of the IEEE International Conference on Computer Design, Cambridge,
Massachusetts, Oct. 3-6 1993. IEEE Computer Society Press.

[27] Proc. of the European Design and Test Conference, Paris, France, Feb. 8Mar. 3
1994. IEEE Computer Society Press.

6


