
Toward a Practical Methodology for Completely
Characterizing the Optimal Design Space �

Stephen A. Blythey Robert A. Walker z

Rensselaer Polytechnic Institute Kent State University
Troy, NY 12180 Kent, OH 44242

Abstract

One of the most compelling reasons for developing high-
level synthesis systems has been the desire to quickly
explore the design space. Since this problem is very
di�cult to solve optimally, most systems compute ei-
ther lower bounds or estimates on the optimal trade-
o� curve. The methodology described here goes beyond
most previous work in several ways: (1) it computes all
optimal tradeo� points so as to completely characterize
the design space, (2) it solves not only the scheduling
problem, but the clock determination and module selec-
tion problems as well, and (3) it carefully prunes the
search space at each level of the design cycle.

1 Introduction

For many years, one of the most compelling reasons for
developing high-level synthesis systems [1, 2] has been
the desire to quickly explore a wide range of designs
for the same behavioral description. Given a set of
designs, two metrics are commonly used to evaluate
their quality: area (ideally total area, but often only
functional unit area), and time (the schedule length, or
latency). Finding the optimal tradeo� curve between
these two metrics is called design space exploration.
Design space exploration is generally considered too

di�cult to solve optimally in a reasonable amount of
time, so the problem is usually limited to computing
either lower bounds [3] or estimates [4] on the optimal
tradeo� curve for some set of time or resource con-
straints. Moreover, the design space is usually deter-
mined by solving only the scheduling and functional
unit allocation subproblems.
The design space exploration methodology described

here goes beyond traditional design space exploration
in several ways. First, all optimal tradeo� points
are computed so that the design space is completely
characterized. Second, these optimal tradeo� points
represent optimal solutions to the time-constrained
scheduling (TCS) and resource-constrained scheduling
(RCS) problems, rather than lower bounds or esti-
mates. Third, the tradeo� points are computed in a
manner that supports more realistic module libraries
by incorporating clock length determination and mod-
ule selection into the methodology. Finally, these
tradeo� points are computed in an e�cient manner
through careful pruning of the search space during the

�This material is based upon work supported by the National
Science Foundation under Grant No. MIP-9423953.

yDepartment of Computer Science.
zDepartment of Mathematics and Computer Science. This work

was performed when R. Walker was on the faculty of the Department
of Computer Science at Rensselaer.

Amax

Amin

f(T)*

Tmin
A

re
a

T

f(T)

T Tmax* Latency

Figure 1: Example Design Space Showing Pareto Points

design cycle. The resulting methodology can also be
extended to include additional subproblems.

1.1 The Design Space

The process of exploring the design space can be
viewed as solving either the time-constrained schedul-
ing (TCS) problem (minimizing the functional unit
area) for a range of time constraints, or the resource-
constrained scheduling (RCS) problem (minimizing the
latency) for a range of resource constraints. Although
there is a tradeo� between latency and area, the trade-
o� curve is not smooth due to the �nite combinations
of the library modules available [5].
Consider the design space shown in Figure 1 { this

curve can be described by the set of points f(T; f(T))g,
where f(T) is the minimum area required for a given
time constraint T (i.e., the optimal solution to that
TCS problem). To ensure that this curve is completely
characterized, one could exhaustively solve the TCS
problem optimally for every time constraint T from
Tmin (the critical path length) to Tmax (the time con-
straint corresponding to the module selection / allo-
cation with the minimum area). However, this brute-
force approach is not very e�cient.
Fortunately, the number of points needed to fully

characterize the optimal tradeo� curve is much smaller.
The curve can be completely characterized by the
set f(T �; f(T �))g of optimal tradeo� points (shown by
black dots in Figure 1) { those points for which there
is no design with a smaller latency and the same area,
and no design with a smaller area and the same latency.
Such points are called Pareto points [2, 6], and can be

9th Int. Symp. on System Synthesis 1 La Jolla, California, November 1996

Design Space Exploration:
areacur MAXINT
compute Tmin and Tmax

compute all candidate time constraints Ti in [Tmin; Tmax]
for each Ti from Tmin to Tmax

if (latency(ASAP) > f(Ti))
(Ti; f(Ti)) is not a feasible schedule

else
compute the lower bound lb on f(Ti)
if (lb >= areacur)

(Ti; f(Ti)) is not a Pareto point /* nP-lb */
else

compute the upper bound ub on f(Ti)
if (lb = ub)

(Ti; f(Ti)) is a Pareto point /* P-lbub */
areacur = lb

else
compute the LP-relaxed lower bound rlb on f(Ti)
if (rlb >= areacur)

(Ti; f(Ti)) is not a Pareto point /* nP-rlb */
else if (rlb = ub)

(Ti; f(Ti)) is a Pareto point /* P-rlbub */
areacur = rlb

else
calculate IP solution ip = f(Ti).
if (ip < areacur)

(Ti; f(Ti)) is a Pareto point /* P-ILP */
areacur = ip

else
(Ti; f(Ti)) is not a Pareto point /* nP-ILP */

Figure 2: Voyager's main design space exploration loop

formally de�ned as follows:
f(T �) < f(T � � k); 1 � k � T � � Tmin

f(T �) � f(T � + k); 1 � k � Tmax � T �

Therefore, the design space exploration problem can
be solved more e�ciently by �nding only the Pareto
points in the design space.

2 The Base Methodology

To �nd all of the Pareto points, either the TCS prob-
lem could be solved repeatedly for various time con-
straints, or the RCS problem could be solved repeat-
edly for various resource constraints. Our methodology
repeatedly solves the TCS problem1, which leads to two
subproblems: (1) determining which time constraints
to explore, and (2) determining how to e�ciently ex-
plore the design space at each time constraint.
Ideally, we want to avoid exhaustively searching all

time constraints in the feasible range [Tmin; Tmax]. If
the module set and clock length are speci�ed a priori,
then the TCS problem need only be solved for those
time constraints that are a multiple of the clock length,
since any other time constraint could be replaced by
the smaller of the two time constraints that it would
lie between without any increase in area.
As a simple example, consider the design space ex-

ploration problem for the DIFFEQ example [7], using
library A from Table 1 (Timmer's \trivial" library 1
from [3]) and a clock length of 100. The minimum time

1Note that, although we are solving only the TCS problem, this
methodology is not limited to solving only that problem, and could
be extended to include register allocation, interconnect allocation,
control unit design, etc.

MODULE AREA DELAY (ns) OPERATIONS
mult 1440 200 f*g
alu1 160 100 f+;�; <g

Table 1: Library A { Timmer's \trivial" library 1

1000

1500

2000

2500

3000

3500

4000

4500

5000

500 600 700 800 900 1000 1100 1200 1300 1400

A
re

a

Latency

Optimal (Pareto-Based) Curve
Optimal Solutions

Lower Bounds

Figure 3: Results from DIFFEQ using library A

constraint is 600 (the length of the critical path), the
maximum time constraint is 1300 (the latency required
for a feasible schedule with 1 mult and one alu1), so the
only time constraints that must be explored are those
in the set f600; 700; 800; 900; 1000; 1100; 1200; 1300g.
Given that set of time constraints, our Voyager de-

sign space exploration system [8] e�ciently character-
izes the design space as follows. The main loop (see
Figure 2) scans the time constraints in the direction
of increasing latency. At each time constraint, an
ASAP schedule is �rst calculated to determine if a fea-
sible schedule exists for that time constraint and clock
length. If so, then it uses a heuristic to compute a
lower bound on the functional unit (FU) area; if this
area is the same as or larger2 than the previous area,
then that solution is not a Pareto point. This is the
case for time constraints 900, 1000, 1100, and 1200 in
Figure 3.
However, if the lower bound is smaller than the pre-

vious area, then it is a potential Pareto point. The
methodology then computes an upper bound on the
area, and compares it to the lower bound. If the
two are equal, then the point is an optimal solution,
and a Pareto point (e.g., time constraint 800 in Fig-
ure 3); if not, then the results are still inconclusive (e.g.,
time constraint 700). It then uses a tighter (but more
computationally-intensive) FU lower-bounding method
based on LP-relaxation, and tries this procedure again
(in this example, determining that time constraint 700
corresponds to a Pareto point). If this method also
fails, then it solves a carefully-developed ILP formu-
lation [9] to determine the optimal solution, using the
bounds determined earlier to reduce the search space
for that solution.
Thus our base methodology quickly determines

whether or not each time constraint corresponds to a

2In the problem as speci�ed so far, the area will never be larger.
However, it may be larger when the clock length determination and
module selection problems are incorporated into the methodology as
described in Sections 3 and 4.

2

Pareto point by carefully pruning the search space. It
�rst computes a small set of time constraints to ex-
plore. Increasingly tighter heuristics are then used to
try to determine if each time constraint corresponds to
a Pareto point. Only if those heuristics fail is a more
computationally-intensive ILP formulation used.
Unfortunately, assuming the module set and clock

length is speci�ed a priori is unrealistic with complex
module libraries. Accordingly, Section 3 describes how
this base methodology can be extended to include clock
length determination and Section 4 describes the in-
corporation of module selection. Finally, Section 5
presents some results using other benchmarks and de-
scribes how other problems could be incorporated into
the methodology.

3 Adding Clock Determination

As described earlier, our base methodology explores a
set of time constraints, determining whether or not the
solution to each TCS problem is a Pareto point. The
problem was simpli�ed by assuming the clock length
was known a priori, whereas recent work has shown
that not only is determining the system clock length a
di�cult problem [4, 10, 11, 12, 13, 8]), but the choice
of the clock length has a signi�cant impact on the re-
sulting design. Therefore, the problem of clock length
determination must be folded into the design space ex-
ploration problem.

3.1 Prior Work

As described in [8], the clock determination problem is
usually ignored in favor of ad hoc decisions or estimates.
For example, several early synthesis systems used the
delay of the slowest functional unit as the estimated
clock length, a choice which favored the use of chaining
and disallowed multi-cycling. A heuristic method for
�nding the clock length was given in [11], but the result
may not be optimal.
To guarantee that the optimal clock length is

chosen,3 the scheduling problem could be solved re-
peatedly for every possible clock length { a very
computationally-intensive task. Fortunately, such an
exhaustive search is not necessary, as the set of can-
didate clock lengths to be scheduled can be reduced.
In [12], Corazao et al. gave one method for reducing
that set. A tighter method was introduced in [4], and
later proven correct in [13] and [8] { this method com-
putes a small set of candidate clock lengths (one of
which must be the optimal clock length) by taking the
ceiling of the integral divisors of each of the functional
unit delays.

3.2 Pruning the Candidate Clock Lengths

Even these integral-divisor methods can lead to a set
of candidate clock lengths so large that it becomes
too time-consuming to solve the TCS problem for each
clock length at each time constraint. Fortunately, the
set of candidate clock lengths can be reduced even fur-
ther, as described below.

3Actually, this is only the data path component of the system
clock length; the �nal clock length includes controller and intercon-
nect delays as well.

MODULE AREA DELAY (ns) OPERATIONS
mul1 150 163 f*g
alu1 100 48 f+;�; <g

Table 2: Library B { Narayan's library

Clock Length slack(*) slack(+) replaced by
163 0 115 {
82 1 38 {
55 2 7 {
48 29 0 24
41 1 38 82
33 2 18 55
28 5 8 24/55
24 5 0 {
21 5 15 24/55
19 8 9 24/55
17 7 3 24

Table 3: Slack values found in library B

De�nition 1 For a given clock length c, the slack sk
of a module of type k with execution delay dk is given
by

sk(c) = c � ddk=ce � dk;

Theorem 1 Given a clock length c, if there exists a
clock length c� such that sk(c

�) � sk(c) for all module
types k in the current module selection, then c can be
replaced by c� without lengthening the schedule.

Proof: Since sk(c
�) � sk(c) for all modules k, the

same quality will hold for operations in a schedule using
these modules. Thus all operations in the schedule us-
ing c could be scheduled at least as soon, if not sooner,
in a schedule using c� because all operations will be
capable of executing faster (or equally as fast) in the
schedule using c�. Thus, changing the clock length to
c� can only improve the schedule.2

To demonstrate the use of this theorem, consider li-
brary B, shown in Table 2 (the VDP100 library from
[11], augmented with areas similar to those of library
A). Assuming a technology limit of 17ns on the short-
est clock length, integral divisor methods give the set
CK = f163; 82; 55; 48; 41; 33; 28; 24; 21; 19; 17g of can-
didate clock lengths, with the corresponding slack val-
ues shown in Table 3.
Consider the clock length of 33ns, found as

d163=5e = 33. When a multiplier is scheduled using
this clock length, there will be a slack of 2ns. There
are several clock lengths whose slack for the multiplier
is smaller, but the slack corresponding to the alu1 is
always larger. However, a clock length of 55ns has the
same slack as the multiplier, and less slack for the alu1.
Therefore, Theorem 1 says that any schedule that uses
a clock length of 33ns can be shortened by using a
clock length of 55ns (without increasing the number of
functional units).
When Theorem 1 is applied to the full set of can-

didate clock lengths, the set is reduced to CK 0 =
f163; 82; 55; 24g. Note that when two sets of slack val-
ues are equivalent, the shorter clock length is dropped

3

200

250

300

350

400

450

500

550

600

650

700

400 500 600 700 800 900 1000 1100

A
re

a

Latency

Optimal (Pareto-Based) Curve
Optimal Solutions

Lower Bounds

Figure 4: Results from DIFFEQ using library B

cl
o
ck
s

ti
m
e

co
n
st
r.

d
es
ig
n

p
o
in
ts

n
P
-l
b

n
P
-r
lb

n
P
-I
L
P

P
-l
b

P
-r
lb

P
-I
L
P

4 49 50 38 6 0 2 2 0

Table 4: Statistics from solving DIFFEQ using library B

since it would tend to result in a larger controller.

3.3 Exploring the Candidate Clock Lengths

Once the pruned set CK 0 of candidate clock lengths
has been computed, the integral multiples of each of
those clock lengths give the time constraints to ex-
plore. Then, for each such time constraint and can-
didate clock length, the methodology outlined in Fig-
ure 2 can be applied. The e�ciency of the search at
each time constraint can be improved by observing that
each time constraint was derived as an integral multi-
ple of one or more clock lengths, so only those inducing
clock lengths need be explored at that time constraint.
The resulting methodology is outlined in Figure 5.
Using library B and the DIFFEQ example, this

methodology generates the design space shown in Fig-
ure 4. From the pruned set CK 0 = f163; 82; 55; 24g of
candidate clock lengths, 49 time constraints were gen-
erated, and 50 time constraint / clock length pairs were
explored (note that there was only a single time con-
straint with more than one candidate clock length).
Two corresponded to infeasible schedules, while the
other 48 had to be examined to determine if they were
Pareto points. As Table 4 shows (the headings of the
last six columns correspond to labels in Figure 2), the
vast majority of the solutions were determined to be
either Pareto or non-Pareto points using the bound-
ing heuristics { only two were solved using the tighter
LP-relaxation lower bounding method and no solutions
required an ILP approach!
Note also that in several cases (time constraints in

the range 420-600), the lower bound di�ered from the
optimal solution, so methods based solely on lower-
bounding would incorrectly characterize the design
space.
Finally, Figure 4 also demonstrates the importance

of systematically examining all relevant clock lengths

Design Space Exploration w/ Clock Determination:
areacur MAXINT
compute pruned set CK0 of candidate clock lengths
compute Tmin and Tmax

for each cj in CK0

compute all candidate time constraints Ti in [Tmin; Tmax]
for each Ti from Tmin to Tmax

using each cj in CK0 inducing Ti
determine if (Ti; f(Ti)) is a Pareto point (see Figure 2)

Figure 5: Voyager's design space exploration loop with clock deter-
mination

in the design space. At a time constraint of 652, the
inducing clock length of 163ns leads to a solution with
an area of 500, whereas the previous time constraint
had a lower area of 400. Although the point (652, 500)
is optimal with respect to its time constraint and clock
length, it is not a Pareto point, and will be rejected by
the line labeled /* nP-lb */ in Figure 2.

4 Adding Module Selection

While adding clock length determination to the base
methodology is an important step toward supporting
more complex libraries, the methodology must also be
extended to cover libraries that o�er a number of pos-
sible module sets. Again, we would prefer to avoid an
exhaustive search of all possible module sets, yet we
must ensure that we do not miss any combination of
a time constraint, clock length, and module set that
corresponds to a Pareto point.

4.1 Prior Work

Over the years, a variety of methods have been em-
ployed to determine the appropriate module set. One
method, described in [14], generates a number of mod-
ule sets, and then selects the best one. Another
method, presented in [3], computes an initial module
set through a MILP formulation, and determines its
validity by scheduling; if no viable schedule is found,
then the set (and its allocation) are updated, and the
scheduling process is repeated.4 As with some of the
previous work on clock length determination, using
such techniques to determine a single module set be-
fore (and independently of) scheduling cannot guaran-
tee a globally optimal solution. Instead of trying to
�nd a single module set, the method found in [4] ex-
haustively explores all possible module sets. Since this
method also exhaustively explores all integral divisor
based clock lengths, its computational complexity is
too large for optimal scheduling, so only estimates are
computed.

4.2 Exploring Di�erent Module Sets

Fortunately, such an exhaustive search is not necessary.
Many of the possible module sets can be eliminated
since they are incapable of implementing all the opera-
tion types found in the data ow graph. For example,
in the case of the DIFFEQ, the module set must be

4This method also incorporates the type mapping problem into
the MILP formulation { something our methodology does not yet
handle. See Section 5.

4

MODULE AREA DELAY (ns) OPERATIONS
mult 1440 200 f*g
alu1 160 100 f+;�; <g
sub1 150 100 f-g
add1 150 100 f+g
alu2 90 200 f+;�; <g
sub2 85 200 f-g
add1 85 200 f+g

Table 5: Library C { Timmer's library 2

1000

1500

2000

2500

3000

3500

4000

4500

5000

600 800 1000 1200 1400

A
re

a

Latency

Optimal (Pareto-Based) Curve
Optimal Solutions

Lower Bounds

Figure 6: Results from DIFFEQ using library C

capable of performing the operations f+;�; �; <g; any
module sets that do not can be eliminated.
Moreover, the number of module sets that must be

explored at each time constraint can be reduced (as was
the number of candidate clock lengths) by observing
that each time constraint was derived as an integral
multiple of a clock length derived from one or more
speci�c modules. Therefore, only those module sets
that contain at least one of those modules must be
explored at that time constraint.
Using library C, shown in Table 5 (Timmer's library

2 from [3]), and the DIFFEQ example, the methodol-
ogy described above generates the design space shown
in Figure 6. There are 32 possible module sets, but
only 1 pruned candidate clock length (100ns) and 9
time constraints, resulting in 288 TCS problems to
solve. 32 resulted in infeasible schedules (i.e., no so-
lution was possible), and as before, the vast majority
of the solutions were determined to be either Pareto or
non-Pareto points using the bounding heuristics.
As another example, consider library D, shown in Ta-

ble 6 (an arti�cial library slightly less complex than li-
brary C, but with more realistic module delays). Using
that library, and the DIFFEQ example, the methodol-
ogy described above generates the design space shown

MODULE AREA DELAY (ns) OPERATIONS
alu 100 125 f�;+;�; <;>g
mul 80 100 f*g
add 50 50 f+g
sub 60 60 f-g
cmp 65 60 f<;>g

Table 6: Library D { an arti�cial complex library

50

100

150

200

250

300

350

400

450

200 400 600 800 1000 1200 1400

A
re

a

Latency

Optimal (Pareto-Based) Curve
Optimal Solutions

Lower Bounds

Figure 7: Results from DIFFEQ using library D

li
b
ra
ry

cl
o
ck
s

ti
m
e

co
n
st
r.

d
es
ig
n

p
o
in
ts

n
P
-l
b

n
P
-r
lb

n
P
-I
L
P

P
-l
b

P
-r
lb

P
-I
L
P

C 1 9 288 251 1 0 0 2 2
D 7 99 1522 1325 1 3 9 0 1

Table 7: Statistics from solving DIFFEQ using libraries C and D

in Figure 7. Here there were 16 possible module sets, 9
integral-divisor candidate clock lengths, and 131 time
constraints { almost 19,000 combinations. Even af-
ter pruning the candidate clock lengths, there were
6 pruned candidate clock lengths, and 93 time con-
straints { almost 9,000 combinations.
However, the methodology had to solve only 1522

TCS problems (an average of 1.35 clock lengths and
11.27 module selections at each time constraint). 183
of those were infeasible, and again, the vast majority
of the solutions were determined to be either Pareto
or non-Pareto points using the bounding heuristics.
Moreover, this entire procedure took only 1.5 hours of
wall-clock time. Without such a careful pruning of the
search space, this problem could not have been solved
optimally in a reasonable amount of time.
Furthermore, with these 4 module delays, there are

many resulting designs that lie above the optimal
tradeo� curve. Although these designs are optimal so-
lutions for a particular clock length and module set,
they are not Pareto points, so it is very important that
the methodology correctly explores the design space.
For example, [3] presents a method that begins at
time constraint Tmax and alternately performs time and
area lower-bounding to �nd a stair-step tradeo� curve.
Even if that methodology is enhanced to alternate be-
tween optimally solving the resource-constrained and
time-constrained scheduling problems, it would only
�nd the Pareto-based tradeo� curve in the absence of
the combined module selection and clock length de-
termination problem. If this combined problem was
included, the enhanced methodology would fail to �nd
the Pareto-based curve if one of the points found by
time-constrained scheduling is a suboptimal point that
lies above the optimal Pareto-based curve. Such a
point (which would have a non-minimal area) would

5

50

100

150

200

250

300

350

400

450

500 1000 1500 2000 2500 3000 3500 4000 4500

A
re

a

Latency

AR Optimal (Pareto-Based) Curve
EWF Optimal (Pareto-Based) Curve

Figure 8: Results for AR-lattice Filter and EWF using library D

then be used by resource-constrained scheduling to �nd
the minimal latency with this (non-minimal) area, thus
compounding the problem and giving an erroneous de-
sign curve that actually lies above the optimal area
curve based on the Pareto points.

5 Conclusions and Future Work

This paper has presented a methodology to compute
all optimal tradeo� points (Pareto points) in order to
completely characterize the design space for the mod-
ule selection, clock length determination, and schedul-
ing problems. Moreover, the methodology �nds those
Pareto points e�ciently by carefully pruning a large
number of sub-optimal solutions at each level of the de-
sign cycle, making it possible to use optimal scheduling
techniques rather than bounds or estimates.
Tests using the DIFFEQ benchmark and a variety

of module libraries have shown the importance of con-
sidering the clock length determination and module se-
lection problems in conjunction with (rather than prior
to) the scheduling problem. Without considering those
additional problems, we have shown that the results
are over-simplistic and do not accurately reect the
optimal tradeo� curve; in fact, they may entirely miss
many globally optimal points.
Furthermore, we have shown that handling realistic

module delays makes the problem much more di�cult
than simply increasing the number of modules of each
type (compare Figures 4 and 6, or Figures 6 and 7).
This goes against the \classical wisdom", which says
that the module selection problem is crucial to han-
dling modern libraries, yet the clock length determina-
tion problem should be ignored because we do not have
enough information at this point in the design cycle.
It is also interesting to note that not only is the mod-

ule library a signi�cant factor in the complexity of the
design space, but the structure of the data ow graph
is important as well. Consider Figure 8, which shows
the results for the EWF and AR-lattice benchmarks
with library D. Both data ow graphs contain only ad-
ditions and multiplications, but even though the EWF
is more than 20% larger, the AR �lter's Pareto-based
tradeo� curve is more complex.

Although we have presented a methodology that
solves the TCS problem optimally to completely char-
acterize the design space, the ideas presented here can
also be used to generate a preliminary characterization
using only bounding techniques.5 For example, for the
DCT benchmark and library D, there are about 24,000
combinations of module sets, clock lengths, and time
constraints, yet only about 2500 remain after clock
length pruning. Of those, about 2400 would be identi-
�ed as non-Pareto points using the heuristics, leaving
only about 100 to be characterized later.
Finally, the methodology presented here could be ex-

tended to consider other problems as well. First, al-
though this methodology solves the module selection
problem, it currently ignores the type mapping prob-
lem { that is, if two di�erent adders are available, it
will choose only one, and schedule all additions onto
adders of that type. Second, the methodology cur-
rently considers only functional unit area, whereas it
should also consider register area, interconnect area,
controller area, etc.

References
[1] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Speci�cation

and Design of Embedded Systems. Englewood Cli�s, NJ 07632,
USA: P T R Prentice-Hall, 1994.

[2] G. De Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill series in electrical and computer engineering, New
York, NY, USA: McGraw-Hill, 1994.

[3] A. H. Timmer, M. J. M. Heijiligers, and J. A. G. Jess, \Fast
System-Level Area-Delay Curve Prediction," in Proc. of 1st
APCHDLSA, pp. 198{207, 1993.

[4] L.-G. Chen and L.-G. Jeng, \Optimal Module Set and Clock
Cycle Selection for DSP Synthesis," in Proc. of 1991 IEEE
International Symp. on Circuits and Systems., (Singapore),
pp. 2200{2203, IEEE Computer Society Press, June 11-14 1991.

[5] M. C. McFarland, \Reevaluating the Design Space for Regis-
ter Transfer Hardware Synthesis," in Proc. of the IEEE/ACM
International Conference on Computer-Aided Design, (Santa
Clara, California), pp. 262{265, IEEE Computer Society Press,
Nov. 9-12 1987.

[6] R. K. Brayton and R. Spence, Sensitivity and Optimization.
Computer-aided design of electronic circuits, 52 Vandervilt Av-
enue, New York, NY 10017, USA: Elsevier Science Publishing
Co., INC., 1984.

[7] P. G. Paulin and J. P. Knight, \Force Directed Scheduling for
the Behavioral Synthesis of ASICs," IEEE Transactions on
Computer-Aided Design, vol. 8, pp. 661{679, June 1989.

[8] S. Chaudhuri, S. A. Blythe, and R. A. Walker, \A Solution
Methodology for Exact Design Space Exploration in a 3D De-
sign Space." to appear in IEEE Trans. on VLSI.

[9] S. Chaudhuri, R. A. Walker, and J. E. Mitchell, \Analyzing and
Exploiting the Structure of the Constraints in the ILP Approach
to the Scheduling Problem," IEEE Transactions on VLSI Sys-
tems, vol. 2, pp. 456{471, Dec. 1994.

[10] V. Chaiyakul, A. C.-H. Wu, and D. D. Gajski, \Timing Models
for High Level Synthesis," in [15], pp. 60{65.

[11] S. Narayan and D. D. Gajski, \System Clock Estimation based
on Clock Slack Minimization," in [15], pp. 66{71.

[12] M. Corazao, M. Khalaf, L. Guerra, M. Potkonjak, and J. M.
Rabaey, \Instruction Set Mapping for Performance Optimiza-
tion ," in Proc. of the IEEE/ACM International Conference
on Computer-Aided Design, (Santa Clara, California), pp. 518{
521, IEEE Computer Society Press, Nov. 7-11 1993.

[13] P. Jha, S. Parameswaran, and N. Dutt, \Reclocking for High
Level Synthesis," in Proc. of the Asia-South Paci�c Confer-
ence on Design Automation (ASP-DAC), (Makuhari Messe,
Chiba, Japan), IEEE Computer Society Press, Aug. 29-Sept. 1
1995.

[14] R. Jain, A. C. Parker, and N. Park, \Module Selection for
Pipeline Synthesis," in Proc. of the 25th ACM/IEEE Design
Automation Conf., (Anaheim, California), pp. 542{547, IEEE
Computer Society Press, June 12-15 1988.

[15] Proc. of the European Design Automation Conference (Euro-
DAC), (Hamburg, Germany), IEEE Computer Society Press,
Feb. 1992.

5Note that the bounding methodology described here would more
fully characterize the design space than the one described in [3], for
the reasons explained in Section 4.2.

6

