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Analyzing and Exploiting the Structure of the
Constraints in the ILP Approach to the

Scheduling Problem
Samit Chaudhuri, Robert A. Walker, John E. Mitchell

Abstract|In integer linear programming (ILP), formulat-
ing a \good" model is of crucial importance to solving that
model [1]. In this paper, we begin with a mathematical
analysis of the structure of the assignment, timing, and re-
source constraints in high-level synthesis, and then evaluate
the structure of the scheduling polytope described by these
constraints. We then show how the structure of the con-
straints can be exploited to develop a well-structured ILP
formulation, which can serve as a solid theoretical founda-
tion for future improvement. As a start in that direction,
we also present two methods to further tighten the formu-
lation. The contribution of this paper is twofold: (1) it pro-
vides the �rst in-depth formal analysis of the structure of
the constraints, and it shows how to exploit that structure
in a well-designed ILP formulation, and (2) it shows how
to further improve a well-structured formulation by adding
new valid inequalities.

I. Introduction

The scheduling problem in high-level synthesis [2] is con-
cerned with sequencing the operations of a control/data
ow graph (cdfg) into correct order. This is an optimiza-
tion problem, and is speci�ed in several ways depending
on the goal: (1) unconstrained scheduling (UCS) min-
imizes a function of the number of hardware resources
and the number of control steps; (2) resource-constrained
scheduling (RCS) minimizes the number of control steps
when the number of hardware resources is �xed; (3) time-

constrained scheduling (TCS) minimizes the number of re-
sources when the number of control steps is �xed. We can
also consider a fourth problem called time- and resource-

constrained scheduling (TRCS), which optimizes a given
objective function when both the number of hardware re-
sources and the number of control steps are �xed. The
decision problem [3] corresponding to TRCS is known to
be NP-complete [4]; therefore at present, no polynomial
time exact algorithm exists to solve any of the scheduling
problems.
To solve the scheduling problem, both heuristic schedul-

ing algorithms, which �nd approximate (or suboptimal) so-
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lutions, and exact algorithms, which �nd optimal solutions,
have been used. A wide variety of heuristic algorithms are
used, including the transformational [5], list [6], and force-
directed [7] scheduling heuristics. In contrast, most ex-
act algorithms employ integer linear programming (ILP) to
compute the optimal solutions. Although solving an ILP
formulation is NP-hard [3], signi�cant progress has been
made in the development of e�cient ILP algorithms. ILP-
based schedulers, such as OASIC[8] and ALPS[9], have pro-
duced better schedules than heuristic algorithms, in com-
parable time for medium-sized problems. In this paper we
will focus on the structure of the constraints in ILP ap-
proach to the scheduling problem, and on exploiting that
structure in a well-designed ILP formulation.

A. Background

Integer programming problems [10] either maximize or
minimize an objective function of many variables, subject
to: (a) equality and inequality constraints, and (b) integral-
ity restrictions on all of the variables. It is also common to
use linear objective functions and linear constraints, and to
require the variables to be nonnegative. An Integer Linear

Programming (ILP) formulation is written as:

zIP = min f cTx jx 2 PF ; x integerg (1)

where PF = fAx � b; x 2 Rn+g

where Rn+ is the set of nonnegative real (n � 1) vectors, c
is a (n � 1) real vector, b is a (m � 1) vector of integers,
and A is a (m� n) matrix of integers.

A wide variety of problems can be represented by ILP
formulations. However, solving a general ILP formulation
is known to be NP-hard [3], so solving a problem by using
a poorly-designed ILP formulation is not a very practical
strategy.

Fortunately, not all ILP formulations are equally di�cult
to solve. Recent research has lead to the understanding of
properties that make some ILP formulations well-solvable.
We refer to such formulations as good, or structured, be-
cause the constraints of these formulations have some spe-
cial structure. Use of good formulations has led to signi�-
cant success of the ILP approach for solving NP-complete
problems in other areas, such as the traveling salesman
problem (TSP) [11], 0-1 integer programming [12], and
minimum perfect 2-matchings [13]. It has been said in [1]
that \formulating a good model is of crucial importance

to solving the model". Therefore, to e�ciently solve the
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Fig. 1. Feasible Regions of an ILP Formulation

scheduling problem, it is important to use a good, or struc-
tured formulation instead of just an ad-hoc formulation.
Before we can discuss why some particular combinatorial

problems can be e�ciently solved using ILP formulations,
note that we can solve the ILP presented in (1) by solving
the following problem [10]:

zIP = min f cTx jx 2 PI g (2)

where PI = convfx 2 PF jx integerg

where conv denotes convex hull.
A geometrical view of PF and PI is given in Figure 1.

The feasible solutions to the ILP are denoted by the inte-
ger points inside PF ; depending on the objective function,
one of them represents an optimum solution. The feasible
region of (1) consists of only the integer points; in contrast,
the feasible region of (2), PI , consists of the convex hull of
the same integer points.
Since PF is described using only equality and inequality

constraints (no integrality constraints are required), any
linear objective function can be minimized over PF in poly-
nomial time using a linear program. This motivates us to
de�ne a related problem, called the LP-relaxation of the
ILP (2), as follows:

zLP = min f cTx jx 2 PF g (3)

Since PI � PF , we can conclude from (2) and (3) that
zLP � zIP . We say that the polyhedron PF is integral

if PI = PF , and when PF is integral, zLP = zIP , and
the ILP formulation can be solved in polynomial time by
solving its LP-relaxation. Therefore, while formulating an
ILP, one should attempt to �nd equality and inequality
constraints such that PF will be integral.
Unfortunately, except for a very few special problems,

it is not possible to �nd a set of constraints that describe
PF as an integral polyhedron. In general, PI � PF , and
the LP-relaxation provides a lower bound on the objective
function. Most integer programming algorithms require

this bound, and the e�ciency of the algorithm is very de-
pendent on the sharpness of the bound [1]. The sharp-
ness of the bound increases as PF approximates PI more
closely, so for e�cient solution of an ILP formulation, it is
extremely important that PF be close to PI .
For combinatorial problems in other areas, advances in

solving the ILP formulations have been made in several
ways. First, a formal analysis of the structure of the con-
straints has helped to �nd tight descriptions of PF , that
more closely approximate PI . As a result, sharp bounds
on the objective function could be found. Second, formal
analysis has led to new valid inequalities (the inequality
constraints that arise due to the integrality of the vari-
ables), and as a result, the preliminary formulations of the
problem were further tightened. Finally, the increased un-
derstanding of the constraints has also led to better relax-
ation and branching strategies. Taken together, all these
factors have made e�cient solutions of the ILP formula-
tions of these problems possible.
In contrast, most of the research on ILP-based scheduling

algorithms in the area of high level synthesis has concen-
trated solely on describing a correct formulation. Thus the
focus has been only to express the design issues in terms
of mathematical equations, while the structure of the for-
mulation has not received much attention. If we are to de-
velop more e�cient solution techniques, we must analyze
the structure of the constraints of the scheduling problem,
and exploit the structure in a well-designed ILP formula-
tion.

B. Previous Work

Hafer [14] was perhaps the �rst to employ combinatorial
optimization in the high level synthesis area. Although his
work led to a formal de�nition of the problem, the formu-
lation was too complex to design a chip of reasonable size.
Other ILP-based schedulers are GRAD [15], ALPS [9], and
OASIC [8]. A comparison of the details of these sched-
ulers will be presented in Section VI after our notation is
introduced.
At this point, it should be noted that each of the formula-

tions used by these previous systems will yield the optimal
schedule, although they describe the problem in di�erent
ways. The real challenge here is to analyze the structure of
the constraints, to design a formulation that exploits the
structure, and to indicate ways to further tighten it. To
date, there has been no mention of the structure of the for-
mulation used by ALPS or GRAD. In contrast, Gebotys [8]
identi�ed the similarities between the scheduling problem
constraints and other known types of ILP constraints, and
proved that the constraints used in OASIC are tighter than
ALPS. For further improvement in the ILP approach, such
work has to continue, so that the guaranteed optimal re-
sults of ILP solutions can be produced with more e�ciency.
Recent work on ILP-based scheduling algorithms has in-

stead concentrated on including more design parameters
(number of busses, clock length, binding etc.) [16], [17],
[18] into the model in an approximate way. Because of the
robustness of the general ILP model, a correct formulation
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can always be extended to additional design parameters.
However, formal analysis is still necessary for further im-
provement in solution e�ciency, which is the main imped-
iment to practical use of the ILP approach.
There has also been extensive research in scheduling in

other areas [19]. Unfortunately, unlike TSP, or the knap-
sack problem, very little work has been done on describ-
ing the scheduling polyhedra. Analyzing the scheduling
polyhedra is di�cult, and only very recently some work
has been published on the single-machine scheduling prob-
lems [20], [21]. However, the models considered in such
literature are not appropriate for use in high-level synthe-
sis.

C. Motivation and Outline of the Paper

As we discussed in Section I-A, to develop e�cient solu-
tion techniques, we must analyze the structure of the con-
straints of the scheduling problem, and exploit that struc-
ture in a well-designed ILP formulation. Our survey of
previous work presented in Section I-B indicates that more
research is needed in order to explore the structure of the
scheduling constraints. The motivation for this paper is
not to present just another ILP model for the scheduling
problem, but to formally analyze the ILP approach to the
scheduling problem, which will serve as a theoretical basis
for future improvement to this approach. In Sections II
and III, we describe the ILP constraints of the scheduling
problem. Sections IV and V examine the structure of these
constraints, and present an ILP formulation that exploits
that structure.
For further improvement in the solution e�ciency of a

well-designed ILP formulation, new ways have to be found
to tighten the original formulation. In [22], Nemhauser
said, \Preprocessing and polyhedral theory have yielded
at least an order of magnitude improvement in branch-
and-bound algorithms for solving mixed-integer programs".
This prospect of tightening an ILP formulation has so
far remained unexplored in case of the scheduling prob-
lem. In Section VII we discuss a preprocessing method to
modify the convectional resource-constrained ASAP and
ALAP algorithms, and present strong valid inequalities us-
ing polyhedral theory. Finally, Section VIII discusses how
to achieve design goals using our ILP formulation. Ex-
perimental results are presented in Section IX to show the
validity of the predictions made from the analysis in the
previous sections.

II. Preliminaries

Suppose a given cdfg is to be scheduled onto a set S of
control steps. Let I be the index set of all operations, and
let each arc aij of the cdfg indicate a timing relation:

aij ) oi
dij
�!oj

Each timing relation speci�es a delay dij , such that t(j) �
t(i)+dij , where t : I ! S, and t(i) denotes the control step
in which operation oi starts execution. The delay dij can
be used to indicate either a data dependency or a timing

constraint. An arc aij with positive dij (resp. a back-arc
aji with negative dji) implies a minimum (resp. maximum)
timing constraint between oi and oj . A �xed timing con-
straint tf between oi and oj can be easily incorporated
by making dij = �dji = tf . Since maximum timing con-
straints are denoted by back-arcs which create cycles in the
cdfg, we assume, to ensure consistency, that the total delay
of every cycle is � 0.

As-soon-as-possible (ASAP) and as-late-as-possible
(ALAP) schedules give a continuous range Si of control
steps, called the schedule interval, over which an operation
oi can be scheduled.

The type of a functional unit (FU) indicates its function-
ality (eg., multiplication or addition). Let K be the set of
types that are available. Let ak and mk, respectively, be
the area and number of functional units of type k 2 K. The
type of the operations are determined by the type function
� : I ! K. �(i) = k means operation oi is executed on a
functional unit of type k.

The values of mk and S can be �xed or can be vari-
ables, depending on the scheduling problem being solved.
In UCS, a function of area and time, c1jSj+c2

P
k2K akmk,

is minimized. In TCS, the total area
P

k2K akmk is min-
imized for a �xed S. In RCS, jSj is minimized for �xed
values of mk. In TRCS, both S and mk are �xed, and
some objective function is optimized. In all cases, similar
constraints, to be presented in the next section, can be used
with di�erent objective functions.

Consider the set of nodes V =
�
(i; s) j i 2 I ; s 2 Si

	
,

where a node (i; s) indicates that operation oi is sched-
uled in control step s. Each operation oi corresponds to
a set of nodes Vi =

�
(i; s) j s 2 Si

	
(see V2 in Figure 2

(b)). Furthermore, each functional unit type k relates, for
each control step s, to a set of nodes Vk;s =

�
(i; s) j s 2

Si ; �(i) = k
	
.

Each feasible schedule Q � V contains exactly one node
from each Vi, satis�es all the timing constraints between
operations, and uses no more than the available number of
functional units. The feasible schedules will be described
by the following notation:

Q Set of all feasible schedules. This is a set of subsets
of V .
xQ A vector in RjV j, called the incidence or character-
istic vector of Q, where Q � V , de�ned as follows:

x
Q
i;s =

�
1; if (i; s) 2 Q

0; if (i; s) 62 Q

In the next section, we will describe the set of feasible
schedules by specifying a set of equality and inequality
constraints on the incidence vectors, and by imposing inte-
grality constraints, from which one can formulate an ILP.
Our goal is a representation of the ILP by an LP that has
the same optimal solution. Therefore, as discussed in Sec-
tion I-A, we need to consider the convex hull of the feasible
schedules, which can be described as:

PI(Q) = convfxQ 2 RjV j j Q 2 Qg
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PI (Q) is called the scheduling polytope. If we can describe
PI (Q) without using integrality restrictions on x, then we
can solve the ILP by solving an LP using PI (Q) as the
feasible region.
Since the scheduling problem is NP-hard, such a descrip-

tion of PI(Q) is probably not achievable; we can only at-
tempt to describe PI (Q) as tightly as possible, so that the
ILP solution can be found by solving a relatively small
number of LP-relaxations.

III. The ILP Constraints

In this section we will present the ILP constraints of the
scheduling problem, and give a preliminary description of
the scheduling polytope.
The constraints of the scheduling problem can be divided

into three types, namely assignment, timing and resource
constraints. The resource constraints are described in Sec-
tion III-C. In the next two sections, we will discuss the
assignment and timing constraints only. For this purpose,
we will consider the set N of feasible schedules, each of
which satis�es the assignment and timing constraints (but
not necessarily the resource constraints).
The assignment and timing constraints can be repre-

sented using a graph model, called a constraint graph. In
Section III-A, we will discuss the constraint graph Gp used
by the previous systems. We will show that Gp is not
well-structured (its node-packing polytope could be non-
integral), so we will use a di�erent graph Gc which is de-
scribed in Section III-B. The purpose of using Gc is to �nd
and prove the tightest possible description of PF (N ).

A. Graph Models for Scheduling Constraints

Let us �rst consider the set N of feasible schedules, each
of which must contain exactly one node from each Vi and
satisfy all the timing constraints speci�ed in the cdfg. The
conditions under which the set N � V constitutes such a
feasible schedule (i.e., N � N ) can be expressed by listing
the pairs of nodes that can not coexist in N . These forbid-
den pairs can be conveniently expressed as edges between
nodes in a graph, which we will refer to as a constraint

graph. For the time being, we will ignore the constraints
on the number of FU's, and introduce them in a later sec-
tion.
Each edge uv in the constraint graph represents a con-

straint for a feasible schedule N . This constraint can be
described as an edge constraint xu + xv � 1, where xu; xv
are 0-1 variables used for the incidence vector descrip-
tion of N . For example, one can construct the constraint
graph Gp = (V;Ep) in Figure 2 (b), in order to sched-
ule the cdfg of Figure 2 (a) in 6 control steps. A sim-
ple (and very loose) way of describing PF (N ) would be:

PF (N ) = fx 2 R
jV j
+ j xu + xv � 1 ; uv 2 Ep g; then we

could describe the scheduling polytope by adding intergral-
ity constraints as PI (N ) = convfx 2 PF (N j x integer g.

Section I-A stated that, while formulating an ILP, one
should attempt to describe PF (N ) as tightly as possible
(since the goal is to obtain an integral polytope). Two
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Fig. 2. A Constraint graph (a) Timing Relations in the cdfg (b) The
Corresponding Constraint Graph Gp. The Dotted Edge is not in
Gp, and is only Implied by the Timing Relations.

methods for obtaining a tighter description of PF (N ) are
discussed below.

In the �rst method, the above description of PF (N ) is
tightened by adding new edge constraints for edges that
are implied by the timing constraints but are not explicitly
included in Gp. For example, in Figure 2 (a), operation
1 cannot be scheduled into cstep 3 (i.e., x1;3 = 1) when
operation 3 is scheduled into cstep 4 (i.e., x3;4 = 1). This
condition is denoted by the dotted edge in Figure 2 (b),
and represents the edge constraint x1;3 + x3;4 � 1.

Since all integer points inside PF (N ) satisfy the above
edge constraint, it is not mandatory to include this con-
straint in the description of PF (N ) (thus the dotted edge
can be ignored while forming the constraint graph Gp).
However, it is easy to show that there exists a fractional

point inside PF (N ) that violates this constraint. Therefore,
we could add this constraint to our description of PF (N )
to make it tighter.

Instead of considering the edges of Gp, the second
method considers the cliques of Gp, and replaces all the
edge constraints with clique constraints to give an alter-
native description of PF (N ). Since clique constraints are
tighter than edge constraints (more speci�cally, clique con-
straints are facets of PI(N )), this description of PF (N ) is
tighter than the description in terms of edge constraints.

Gebotys [8] used clique constraints to describe PF (N )
as the node-packing polytope (see De�nition 5) of Gp, and
showed that this description is tighter than the one used in
ALPS [9]. However, in the general case, the node packing
polytope of a graph could be non-integral, and it is not
clear how tight this description of PF (N ) is.

As described in the next section, we use a combination
of the two methods above in order to derive the tightest
possible description of PF (N ). First, we add edges to Gp

and consider a larger, well-structured constraint graph Gc

whose node-packing polytope is integral. Then we describe
PF (N ) as the node-packing polytope of Gc, thus leading
to an integral polytope.
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B. The Constraint Graph Gc

As discussed in the previous section, the node-packing
polytope of a graph could be non-integral, so describing
PF (N ) as the node-packing polytope of Gp might not lead
to the tightest description of PF (N ). Therefore, instead of
using Gp, we add some edges that are implied by the timing
constraints but not explicitly included in Gp, and consider
a larger constraint graph Gc. Edges are added in such a
way that the new constraint graph Gc is well-structured,
and has an integral node-packing polytope. Thus when
we describe PF (N ) using the clique constraints of Gc, we
can claim that we have the tightest possible description of
PF (N ).

Although a larger graph might imply a large number of
constraints, we show that all the clique constraints of Gc

are linear combinations of a small number of basic con-
straints. There are two types of basic constraints, given in
(A) and (T) below, that will be shown in Section III-B.2
to be su�cient for describing all the clique constraints of
Gc.

B.1 Construction of Constraint Graph Gc from the Skele-
ton Digraph Gs

We generate the constraint graph Gc from a skeleton

digraph, Gs = fV;Asg, which is discussed in this section.

The arcs of the skeleton digraph Gs belong to two classes
described as follows:

Assignment arcs : From every node (i; s) 2 V , we create an
arc aiis directed to (i; s� 1) and denote it as:

aiis , (i; s)! (i; s� 1)

(for example, see arc a113 in Figure 3).
Timing arcs : For each timing arc aij ) oi

dij
�!oj in the

cdfg, we construct an arc aijs directed from (i; s) to (j; s+
dij � 1), and denote it as:

aijs , (i; s)! (j; s+ dij � 1)

(for example, see arc a235 in Figure 3).

The arcs of the skeleton digraph corresponding to Figure 2
(a) are shown in Figure 3 using thick arrows.

Let G�
s = (V;A�s) denote the transitive closure of the

skeleton digraph Gs. We use the underlying graph Gc of
the digraph G�

s as the constraint graph. For example, Gc

can be obtained by ignoring the directions on the edges in
Figure 3. It can be easily seen that Gp is a subgraph of Gc.

It should be noted that although our constraint graphGc

contains more edges than the initial constraint graph Gp, it
does not not include all possible edges that are implied by
the timing constraints. Edges are included only if they are
necessary to make Gc well-structured. For example, the
dotted edge in Figure 2, although implied by the timing
constraints, is not considered for inclusion in Gc because
we can prove that Gc is already well-structured without
this edge. Therefore, it is not necessary to consider this
edge in the tightest possible description of PF (N ).
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Fig. 3. Skeleton Digraph Gs corresponding to Figure 2 (arcs denoted
by thick arrows), and its Transitive Closure G�

s (all arcs). Con-
straint Graph Gc is the Same as G�

s
, with no Directions on the

Edges.

B.2 Generating all Cliques of the Constraint Graph Gc

Although the general problem of generating all the
cliques is NP-complete, we will show that all the clique
constraints of the graph Gc are linear combinations of two
small basic classes of constraints. Our proof consists of two
steps: �rst, we show that for every maximal clique in Gc,
there exists a maximal path in Gs with the same set of
nodes (Corollary 1), and then we present the minimal set
of path constraints in Gs that are su�cient to generate all
the clique constraints of Gc (Theorem 2).
De�nition 1: A tournament is a complete graph in which

each edge is assigned a direction.
Given a graph G, we will use the notation F � G to indi-
cate that F is a subgraph of G, and we will use V (F ) to
denote the set of nodes of subgraph F .
De�nition 2: Given a graph G, a subgraph F � G is

called a maximal clique (resp. path, tournament) if (1) F
is a clique (resp. path, tournament), and (2) there exists
no other clique (resp. path, tournament) H such that F �
H � G.

Claim 1: For every path L � Gs, there exists a tourna-
ment TL � G�

s such that V (TL) = V (L) (i.e, TL contains
exactly the same set of nodes as L).

Proof: Each pair of nodes that lie on L are directly
connected by an arc in G�

s , due to transitive closure. There-
fore such nodes form a tournament TL in G�

s , such that
V (TL) = V (L).
Theorem 1: For every maximal tournament T � G�

s ,
there exists a unique maximal path LT � Gs such that
V (LT ) = V (T ) (i.e., LT contains exactly the same set of
nodes as T ).

Proof: Let T be any maximal tournament in G�
s .

First we construct a path LT � Gs such that V (LT ) =
V (T ); the uniqueness and the maximality of LT will be
proven in the next part of the proof.
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From Theorem 14 in [23], we know that T has at least
one spanning path L, i.e., V (L) = V (T ). Since T � G�

s ,
the spanning path L � G�

s . Furhtermore, since G�
s is the

transitive closure of Gs, Gs � G�
s . However, from the

above, we can not necessarily conclude L � Gs � G�.
Although each arc of L belongs to A�s , it might not belong
to As.
In general, there may exist an arc (a; b) in L, such that

(a; b) 62 As. It can be concluded that (a; b) must have been
created while taking the transitive closure on Gs. There-
fore, there must be an a� b path Lab � Gs. By replacing
each such (a; b) 62 As with its respective Lab, we can obtain
a walk [24] LT , such that each arc of LT belongs to As and
LT � Gs.
In order for the walk LT to be a path, it is required that

LT does not go through the same node twice. Since Gs is
acyclic (proof given in Appendix I), no node can appear
twice in LT ; hence LT is a path in Gs.
While constructing LT from L, we retained all the nodes

that were originally in L. Therefore we can write:

V (L) � V (LT ) (4)

Since L is a spanning path of T , V (L) = V (T ). Further-
more, from Claim 1, we know that there exists a tourna-
ment TLT � G�

s , such that V (LT ) = V (TLT ). Using these
values of V (L) and V (LT ) in (4), we �nd V (T ) � V (TLT ).
However, V (T ) 6� V (TLT ) because we have assumed T

to be maximal, and we can conclude V (T ) = V (TLT ) =
V (LT ).
The uniqueness of path LT follows from the acyclic prop-

erty of Gs. The maximality of path LT can be proven by
contradiction as follows. If LT is not a maximal path in
Gs, then there must be another path L0 in Gs such that
L0 � LT . However, this implies TL0 � T , which contradicts
our assumption that T is maximal. Therefore, LT must be
a maximal path in Gs.
Corollary 1: For each maximal clique C of Gc, there ex-

ists a maximal path LC in Gs such that V (C) = V (LC).

If, for any U � V we de�ne jxU j as:

jxU j ,
X
u2U

xu; for any U 2 V

then a maximal clique constraint for clique C can be writ-
ten as jxV (C)j � 1. From Corollary 1, we know V (C) =
V (LC), and we can write:

Constraint for clique C: jxV (LC)j � 1 (5)

Thus every maximal clique constraint for Gc corresponds
to a maximal path in Gs, and all the maximal clique con-
straints for Gc can be found by examining the maximal
paths in Gs. We will show that it is enough to consider
the constraints for only two classes of maximal paths in
Gs; the constraints for all other maximal paths are linear
combinations of these two classes of constraints. The two
classes of constraints are described as follows:

(1) For every i 2 I , we consider the path Li consisting of
all the assignment arcs aiis 2 As. Such a path connects
all the nodes in Vi. For example, path L3 is indicated by a
shaded ellipse in Figure 3. The clique constraint for Li is
given below:

jxV (Li)j ,
X
s2Si

xi;s = 1; 8 i 2 I (A)

Constraints (A) are called assignment constraints; they en-
sure that the feasible schedule contains exactly one node
per operation.
(2) For every timing arc aijs 2 As, we consider a path Lijs
consisting of the timing arc aijs, and the assignment arcs
f aiis0 j s

0 > s ; aiis0 2 As g and f ajjs0 j s
0 � s + dij �

1 ; ajjs0 2 As g. For example, path L123 is indicated by a
shaded polygon in Figure 3. The clique constraint for Lijs
is given below:

jxV (Lijs)j ,
X

s0>s�dij

s02Si

xi;s +
X
s0�s

s02Sj

xj;s � 1 8 aijs 2 As

8 s 2 (Si + dij � 1) \ Sj

(T)
Constraints (T) are called timing constraints, and they pre-
vent two nodes that are in timing conict from being in the
same schedule.
Theorem 2: Any maximal clique constraint of Gc is a

linear combination of constraints (A) and (T).
The proof of this theorem is presented in Appendix II.
In this section, we have presented the constraint graph

Gc, and the assignment constraints (A) and timing con-
straints (T) for the scheduling problem. We have proven
that (A) and (T) generate all the clique constraints of Gc.
In a later section (Section IV-A) we will show that the con-
straint graph Gc is well-structured, which allows us to con-
clude that we are able to describe the polytope PF (N ) as
tightly as possible, even in the most general case when min-
imum, maximum and �xed timing constraints are present.

C. Description of the Scheduling Polytope

In the previous section, we have presented the assign-
ment constraints (A) and timing constraints (T) for the
scheduling problem. To ensure that the schedule does not
use more than the available number of FU's, we need a
third type of constraints, namely the resource constraints,
which, for uni-cycle operations, are given below:

jxVk;s j ,
X

i:�(i)=k

xi;s � mk; s 2 S; 8 k (R)

The constraints (A), (T), and (R) can be represented in

the form fx 2 R
jV j
+ j Max = 1 ; Mtx � 1 ; Mrx �

n ; x integerg, where Ma is the coe�cient matrix due to
the assignment constraints,Mt is the coe�cient matrix due
to the timing constraints, and Mr is the coe�cient matrix
due to the resource constraints. If we denote the fractional
scheduling polytope as:

PF (Q) = fx 2 R
jV j
+ jMax = 1 ; Mtx � 1 ; Mrx � m g

(6)
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then we can write:

PI (Q) = convfx 2 PF (Q) j x integer g (7)

In this section we have given a description of PI (Q), that
in addition to equality and inequality constraints, also re-
quires the variables to be integral. Using this preliminary
description, we will examine the structure of PF (Q) to see
how close it is to PI(Q). As mentioned in Section I-A, it
is extremely important that PF (Q) be close to PI(Q).

IV. The Structure of the Constraints

As we stated in Section I-A, the success of an ILP-based
scheduling algorithm depends on tightly de�ning PF (Q)
so that it closely approximates PI(Q). The purpose of
this section is to examine, by analyzing the structure of
the constraints, how close PF (Q) is to PI(Q). Although a
thorough examination is as hard as solving the scheduling
problem itself, we can get some useful information by se-
lectively dropping some of the constraints. In Section 3.1
and 3.2 we will drop the resource and timing constraints,
respectively, and in Section 3.3 we will consider all the con-
straints together to see how they interact.
In [8], Gebotys applied polyhedral theory to analyze only

the structure of the timing constraints. In contrast, we
present a more comprehensive analysis that considers tim-
ing as well as resource constraints. Furthermore, we show
new theoretical results that provide additional insight into
the structural properties of the problem, and will serve as
a basis for future improvement of scheduling algorithms.

A. The Polytope of the Assignment and the Timing Con-

straints

In this section we will drop the resource constraints, and
consider the subsets of V , called feasible timing allocations,
that satisfy the assignment and timing constraints. Let N
be the set of all feasible timing allocations. The convex hull
of the incidence vectors of all the feasible timing allocations
constructs the timing-assignment polytope, which can be
described as follows:

PF (N ) = fx 2 R
jV j
+ j Max = 1 ; Mtx � 1g

PI(N ) = convfx 2 PF (N ) j x integerg

Instead of considering only the feasible timing allocations,
if we also include all the subsets of each feasible timing
allocation, then we get the monotone timing-assignment

polytope; its fractional counterpart is given below:

PF ( ~N ) = fx 2 R
jV j
+ j Max � 1 ; Mtx � 1g (8)

De�nition 3: [10]. A node packing on a graph G =
fV; Eg is a set U � V with the property that no two nodes
in U are joined by an edge.
De�nition 4: [10]. A clique matrix of a graph G is a 0-1

matrix K whose columns correspond to the nodes of G and
rows correspond to the incidence vectors of all the maximal
cliques of G.

De�nition 5: [10]. The fractional node packing polytope

of a graph G is P = fx 2 Rn+ ; Kx � 1g, where K is the
clique matrix of G.
We have shown in Section III-B.2 that the constraints

(A) and (T) generate all the cliques of the constraint graph
Gc. Therefore, for Gc, the rows of the clique matrix are
nothing but the rows of Ma and Mt, and its fractional

node-packing polytope is the same as its monotone frac-
tional timing-assignment polytope, as can be veri�ed from
(8).
De�nition 6: [25]. A graph G = fV;Eg is called tran-

sitively orientable if each edge can be assigned a one-way
direction in such a way that the resulting oriented graph
(V; F ) satis�es the following property:

(a; b) 2 F and (b; c) 2 F implies (a; c) 2 F

Proposition 2: The constraint graph Gc is transitively
orientable

Proof: The proof follows immediately from the con-
struction of Gc, which has been described in Section III-
B.1. Since Gc is the underlying graph of digraph G�

s , it
is enough to examine whether G�

s satis�es the transitive
property mentioned in De�nition 6. It is obvious that G�

s

satis�es the transitive property, because G�
s itself is the

transitive closure of digraph Gs.
Proposition 3: The fractional monotone timing assign-

ment polytope is integral, i.e PF ( ~N ) = PI ( ~N ).
Proof: A transitively orientable graph is a perfect

graph [25], hence the constraint graph Gc is also a perfect
graph. By de�nition, the fractional node-packing polytope
of a perfect graph is integral [10], which implies that PF ( ~N )
is an integral polytope.
The above result immediately leads to the integrality of the
fractional timing assignment polytope, and is stated in the
following corollary:
Corollary 4: The polytope de�ned by the assignment

and the timing constraints is integral,
i.e. PF (N ) = PI(N )

Proof: To prove our claim, we shall use a well-known
result [25] in linear programming:
Lemma 1: Given bounded polyhedra S and T , where S

has a �nite number of extrema, S = T i� maxfcTx j x 2
Sg = maxfcTx j x 2 Tg (8c; integral)
Let us consider any c 2 ZjV j.

maxfcTx j x 2 PF (N )g

= maxfcTx jMax = 1 ; x 2 PF ( ~N )g

= maxfcTx jMax = 1 ; x 2 PI( ~N )g

= maxfcTx j x 2 PI(N )g

The above lemma, when applied to this result, leads to the
conclusion, PF (N ) = PI(N )
In this section we have shown that, for any cdfg with
no positive length cycles, the polytope PF (N ) is integral;
hence, the assignment constraints (A), and the timing con-
straints (T) describe PF (N ) as tightly as possible. This
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property remains valid even when additional architectural
features, such as pipelining, loop-folding, multi-cycle oper-
ations and chaining are added to the model.

B. The Polytope of the Assignment and the Resource Con-

straints

In this section we will drop the timing constraints,
and consider the family R of subsets of V that satisfy
the resource and the assignment constraints. These sub-
sets are called feasible resource allocations. The resource-

assignment polytope PI (R) is the convex hull of the inci-
dence vectors of all the feasible resource allocations, and is
described as:

PF (R) = fx 2 RjV j+ j Max = 1 ; Mrx � mg

PI (R) = convfx 2 PF (R) j x integerg

We want to show that the assignment and the resource con-
straints completely describe PI (R), i.e. PF (R) = PI(R).
Before proceeding further, we need to prove the following
lemma.

Lemma 2: The coe�cient matrix A =

�
Ma

Mr

�
describ-

ing the constraints of PF (R) is totally unimodular (TU).
Proof: The rows of A are nothing but the incidence

vectors of Vi and Vk;s; i 2 I; k 2 K; s 2 S. From the
de�nition it is clear that each node (i; s) 2 V belongs to
exactly one Vi and one Vk;s. Thus each node has an entry
1 in exactly two rows; in other words, each column of A
contains exactly two 1's, one in Ma and one in Mr. This is
a su�cient condition for a matrix to be TU (Chapter III.1,
Corollary 2.8 in [10]).

Proposition 5: For any �xed m 2 ZjKj
+ , the polytope de-

�ned by the assignment and the resource constraints is in-
tegral, i.e. PF (R) = PI(R)

Proof: It is a well-known result that if A is TU then
P = fx 2 R

n
+ j Ax � bg is integral when the elements

of b are integral [10]. When this fact is applied to the
description of PF (R) along with the result of the previous
lemma, the proof is obvious.
When multi-cycle operations (operations with latency
greater than 1) are considered, let l�(i) be the latency of
FU-type �(i) on which operation oi is executed. Opera-
tion oi can be decomposed into l�(i) + 1 uni-cycle oper-
ations. The resource constraints, in this case, would be
similar to (R), and PF (R) would be integral. New �xed
timing constraints would be needed to ensure that the de-
composed operations are scheduled into consecutive control
steps. However, these new constraints would still imply an
integral timing-assignment polytope.
Another method is to modify the resource constraints as

follows:

X
i:�(i)=k

sX
s0=s�l�(i)+1

xi;s0 � mk; s 2 S; 8 k (R0)

However, in this case, the resource-assignment polytope is
not always integral.

integer
points

PF (R)PF (N )

PF (Q)

PI (Q)

x1

x2

Fig. 4. Feasible Regions of the RCS and TRCS Scheduling Problems

Note that in Proposition 5, the vector m is �xed; there-
fore, the integrality results are applicable only to schedul-
ing problems where the number of FU's are �xed (eg., RCS
or TRCS). If the number of FU's are treated as variables,
PF (R) is not integral even for uni-cycle operations. There-
fore, �xing the elements ofm leads to a tighter formulation.
In this section we have shown that the polytope PF (R)

is integral; hence the assignment constraints (A) and the
resource constraints (R) describe PF (R) as tightly as pos-
sible.

C. The Polytope of the Assignment, Timing, and the Re-

source constraints

In the previous sections, we have analyzed the struc-
ture of the resource-assignment polytope and the timing-
assignment polytope; in this section, we will investigate the
structure of the fractional scheduling polytope PF (Q) =
PF (R)\PF (N ). As previously mentioned, our motivation
is to investigate how close PF (Q) is to PI (Q).
From Proposition 5 we know that PF (R) is integral for

the RCS and the TRCS problems. Furthermore, from
Corollary 4 we know that PF (N ) is integral. More specif-
ically, for the RCS and the TRCS problems, PF (Q) is the
intersection of two integral polytopes, as illustrated in Fig-
ure 4. However, as can be seen from Figure 4, this struc-
ture of PF (Q) does not necessarily imply that it is integral.
There can be instances of the scheduling problem in which
PF (Q) is fractional, as can be demonstrated with a coun-
terexample.
For the UCS and the TCS problems, PF (R) is non-

integral, so PF (Q) does not approximate PI(Q) as tightly
as for the RCS and the TRCS problems. Although this
observation is intuitively plausible; it can play a major
role in deciding which scheduling problem can be e�ciently
solved using an ILP formulation. In the next section we will
present a theoretical result more along this line.

V. Using the Constraints in an ILP Formulation

In the previous sections we have described and analyzed
the constraints that describe the fractional scheduling poly-
tope PF (Q). These constraints can be used to formulate an
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ILP that represents a TRCS, TCS, RCS, or UCS problem.
In this section we will present these di�erent formulations,
and discuss how each formulation takes advantage of the
structure of the constraints.
UCS The UCS (Unconstrained Scheduling) problem

minimizes a function of the number of hardware re-
sources and the number of control steps. For this
problem, a su�ciently large bound on the number of
control steps is usually given, that can be used to com-
pute the schedule interval of the operations. To com-
pute the number of control steps required to schedule a
cdfg, we introduce a dummy operation od. All the op-
erations that have no successors, are given od as their
successor in order to make sure that od is scheduled af-
ter all other operations in the cdfg. The UCS problem
is then formulated as:

min f c1
X
s2Sd

sxd;s + c2
X
k2K

akmk jx 2 PF (Q) ; x integerg

RCS An RCS (Resource-Constrained Scheduling) prob-
lem minimizes the number of control steps when the
number of FU's is �xed. Since no bounds are given on
the number of control steps, we �nd an upper bound
using list scheduling, and then determine the schedule
intervals of the operations using this bound. The total
number of control steps is determined using a dummy
operation, in a manner similar to the UCS problem.
The RCS problem is then formulated as:

min f
X
s2Sd

sxd;s jx 2 PF (Q) ; x integer g

TCS A TCS (Time-Constrained Scheduling) problem
minimizes a function of the number of the FU's when
the number of control steps is �xed. This problem is
formulated as:

min f
X
k2K

akmk jx 2 PF (Q) ; x integer g

where ak is an weight (usually area) associated with
an FU of type k.

TRCS A TRCS (Time- and Resource-Constrained
Scheduling) problem mininimizes an objective func-
tion cx when both the number of FU's and the number
of control steps are �xed. This problem is formulated
as:

min f cx jx 2 PF (Q) ; x integer g

A. Choosing a Formulation

Although the descriptions of the four scheduling formu-
lations given above are similar, they can vary widely in
solution time. In this section we will discuss which formu-
lation should be chosen so that the resulting ILP can be
solved e�ciently.
In considering these four di�erent formulations, note that

the number of FU's are treated as variables in UCS and
TCS, while they are �xed in RCS and TRCS. It has been
discussed in Section IV-C that �xed number of FU's leads

to a tighter description of PF (Q) for RCS and TRCS, as
compared to UCS and TCS.
Such a tighter formulation has two advantages: (1) it in-

creases the likelihood that the LP-relaxation has an integer
solution, and (2) it produces sharp bounds on the objec-
tive function. A sharp bound is necessary for the following
reason. Since PF (Q) is non-integral, the LP-relaxation can
produce fractional solutions, which will require us to use
branch-and-bound to �nd the integral optimal solution. In
order for the branch-and-bound approach to be success-
ful, it is important to �nd a sharp bound on the objective
function, so that branches can be pruned e�ciently.
Furthermore, for RCS and TRCS, new techniques (to be

discussed in Section VII) can be used to further tighten the
formulation when the number of FU's are �xed. Therefore,
�xing the number of FU's, as in RCS and TRCS, will lead
to a tighter formulation and a quicker solution.
Now consider only RCS and TRCS, and note that these

two formulations have similar constraint structure, and dif-
fer in the objective function only. Since the quality of the
bounds is independent of the particular objective function
used, the remainder of this section will use a generic objec-
tive function, and will consider the following ILP formula-
tion, which is similar to TRCS:

zIP = min fcx jx 2 PF (Q) ; x integerg (ILP)

The ILP formulation (ILP) can incorporate pipelining, con-
ditionals, loop-folding, chaining, and multi-cycle opera-
tions; their e�ects on the problem structure has already
been mentioned in Section IV. As for the TCS and the
UCS problems, the number of FU's can be found using
a quick lower bounding scheme [26]; then the formulation
(ILP) can be used to �nd the optimal schedule.

B. Performance of the ILP Formulation

As mentioned above, in order for a branch-and-bound
algorithm to be successful, it is important to quickly �nd
a tight bound on the objective function. The bound
on the objective function value is usually obtained by
solving a relaxation of the original problem, most com-
monly an LP-relaxation. Another kind of relaxation,
called the Lagrangian relaxation, produces a tighter bound,
and has led to the success of Lagrangian relaxation-based
branch-and-bound algorithms to solve the traveling sales-
man problem [27], and the minimum-tardiness-scheduling
problem [28]. Fisher [29] has reported that the bounds
produced by Lagrangian relaxation are on the average 95%
within the optimum value, and that such tight bounds al-
low e�cient pruning of the branches.
The LP-relaxation of (ILP) is given as:

zLP = min fcx jx 2 PF (Q)g (LP)

In the following proposition we show that, for our prob-
lem, the LP-relaxation gives a bound equivalent to the La-
grangian relaxation.
Proposition 6: Let zAR and zAP be the Lagrangian

bounds obtained when the timing and resource constraints
are relaxed respectively. Then zAR = zAP = zLP
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Proof: We start with the de�nition of PF (Q) as given
in (6):

PF (Q)

= fx 2 RjV j+ jMax = 1 ; Mtx � 1 ; Mrx � m g

= fMtx � 1 ; x 2 PF (R)g (9)

= fMrx � m ; x 2 PF (N )g (10)

Applying Proposition 5 to (9), we can write:

PF (Q) = fMtx � 1 ; x 2 PI (R)g (11)

Similarly, Corollary 4 can be applied to (9) to give the
following equation:

PF (Q) = fMrx � m ; x 2 PI(N )g (12)

Now we use Theorem 6.2, Chapter II.3 in [10] to conclude
the following:

zAR = min fcx jMtx � 1 ; x 2 PI (R)g

= min fcx j x 2 PF (Q)g from (11)

zAP = min fcx jMrx � m ; x 2 PI (N )g

= min fcx j x 2 PF (Q)g from (12)

The above expressions together with (LP) lead to the con-
clusion zAR = zAP = zLP
The signi�cance of the results of this section is that the
bounds produced by the LP-relaxation are as good as the
bounds from the Lagrangian relaxation. This is probably
the reason why a small number of branches were required
to optimally solve all the test problems we have run. Such
experimental results will be presented in Section IX.

VI. Comparison with Previous Formulations

This paper has presented a formal analysis of the con-
straints on the scheduling problem, providing a theoretical
foundation for choosing an appropriate ILP formulation.
With the exception of some work in OASIC [8], most work
on ILP-based schedulers (ALPS [9], GRAD [15]) has vir-
tually ignored this analysis. Thus our work is the �rst
in-depth analysis of the structure of the constraints on the
scheduling problem.
To date, two di�erent types of timing constraints have

been used in ILP formulations. One type of constraints was
used in ALPS [9], and a second type of constraints, which
are tighter than the �rst type, was �rst used in GRAD [15].
OASIC employed the same type of timing constraints as
GRAD, but Gebotys [8] was the �rst to show that the poly-
tope constituted by the timing and assignment constraints
(referred to as timing-assignment polytope PF (N ) in Sec-
tion IV-A) is similar to the node-packing polytope of the
constraint graph Gp (see Figure 2).
However, in the general case, the node-packing polytope

of a graph could be non-integral unless the constraint graph
is well-structured. To obtain a well-structured constraint

graph, we added edges that are implied by the timing con-
straints but that are not explicitly included in Gp, and con-
sidered a larger constraint graph Gc. We proved that the
node-packing polytope of Gc is integral. Thus we were able
to �nd and prove the tightest possible description of PF (N )
(i.e. PF (N ) is integral), even in the most general case when
minimum, maximum and �xed timing constraints between
operations are present. Although Gc has a large number of
cliques, we showed that it is su�cient to consider a small
number of clique constraints. The remaining constraints
are linearly dependent on those constraints and are redun-
dant.
The timing constraints that we derived fromGc are of the

same type as GRAD and OASIC (clique constraints); how-
ever, we have determined the minimum number of clique
constraints that are necessary to give an integral descrip-
tion of the timing-assignment polytope. Furthermore, it
follows from our analysis that the constraints (9.3) in [8]
are linearly dependent on other clique constraints, and can
therefore be omitted.
The resource constraints that we considered are similar

to those in ALPS and OASIC, but until now, there was no
analysis of those constraints. In this paper, we have inves-
tigated the structure of the resource-assignment polytope
PF (R), and have presented the tightest possible descrip-
tion. For uni-cycle operations, we used the same resource
constraints as OASIC and ALPS; however, for multi-cycle
operations, we have shown an alternative methodology that
also leads to an integral resource-assignment polytope. Al-
though the algebraic description of the resource constraints
is intuitively clear, the knowledge of their structure opens
the possibility of new applications. For example, once we
knew that the resource-assignment polytope was integral,
we found that we could use the resource constraints to com-
pute highly accurate lower bounds on the number of FU's
in an e�cient manner [26].
In summary, our intention was not to present just an-

other ILP formulation with di�erent variables and con-
straints. We took a step backwards, considered the prop-
erties of the ILP constraints that are required for a well-
structured formulation, and then analyzed the scheduling
constraints to identify which descriptions of the constraints
would imply a structured formulation. Future advances in
the ILP approach to the scheduling problem could involve
identifying new facets, and computing tight bounds on the
search space. The knowledge of the problem structure is
essential for progress in these directions, and the results
presented here can provide a theoretical basis for such im-
provements.

VII. Tightening the Formulation

The formulation (ILP), described in the previous section,
can produce sharp bounds on the objective function. Thus
when the LP-relaxation of problem (ILP) produces a non-
integral solution, we can use a branch-and-bound search
and expect that the integral solution would be found in a
small number of branches. At this point, the key to further
improvement in the e�ciency of the ILP solution lies in
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tightening the description of PF (Q) so that it approximates
PI (Q) more closely; it has been mentioned in [1] that this
line of attack has recently proven to be very successful for
ILP algorithms.
We have already analyzed the interaction between the

resource and the assignment constraints in Section IV-B,
and the interaction between the timing and the assign-
ment constraints in Section IV-A; in both cases we de�ned
the tightest possible description of the corresponding poly-
topes. Therefore, in order to further tighten the description
of PF (Q) we need to consider the interaction between the
resource and the timing constraints.
In this section we present two new ways to tighten the

description of PF (Q). In Section VII-A we describe how
resource constraints can be used to shorten an operation's
schedule interval. In Section VII-B we present a new class
of valid inequalities that can be found by considering the
e�ect of timing edges on the resource constraints. Research
in such techniques for tightening the description of PF (Q)
are extremely important for improving the solution e�-
ciency.

A. Preprocessing

In the original constraints of Section III, the schedule
interval of each operation was determined by ASAP and
ALAP scheduling. Ordinary ASAP and ALAP algorithms
assume an unlimited number of FU's, but the algorithms
can be modi�ed to take into account the number of FU's.
These modi�cations help to reduce the schedule interval of
each operation, leading to a formulation using fewer vari-
ables. This procedure has the e�ect of dropping some vari-
ables from the preliminary constraints of Section III, and
of cutting o� some fractional extreme points from PF (Q).
In the following proposition we indicate a way of modi-
fying the ordinary ASAP algorithm so that it considers
constraints on the number of FU's; a similar technique can
be applied to the ALAP counterpart.
Proposition 7: Let, for operation oi, the number of total

predecessors and nonimmediate predecessors of type k be
denoted by npredi;k and predi;k respectively. An ASAP
time ai;k of oi is given by:

ai;k = max f

�
predi;k

mk

�
;

�
npredi;k

mk

�
+ 1 g+ 1 (13)

Proof: In presence of resource constraints, each con-
trol step can be regarded as a bin of capacity mk , and is
labeled with the corresponding control step number. The
�rst term is included to make sure that there are enough
bins to pack all the predecessors of oi. The second term is
required to ensure that after the nonimmediate predeces-
sors of oi have been packed, there is one bin available to
the immediate predecessors of oi.
For an illustration of how the above modi�cation can af-

fect the ASAP time of an operator, consider the data ow
graph of Fig 5, with a resource constraint of 3 adders. For
the shaded operation at the bottom, an ordinary ASAP
scheduling algorithm would schedule the operation in the

4th control step. However, due to the resource constraint,
the operation can not be placed into control step 4 in any
feasible schedule. When Proposition 7 is taken into ac-
count, the following values can be computed: npred =
7 ; pred = 9. Using these values in (13), the operation is
scheduled into the 5th control step. Thus the modi�cation
based on Proposition 7 will lead to a tighter formulation
using fewer variables.

+

++

+

+

+

+

+

+

+

3 adders

Fig. 5. E�ect of Resource Constraints on the ASAP Algorithm

B. Valid Inequalities

The description of PF (Q) can also be made tighter when
the resource constraints are modi�ed by considering the
e�ects of the timing edges that exist between nodes in Vk;s,
as stated in Proposition 8
De�nition 7: A set of cliques fCl j l = 1; : : : ; pg is called

a clique cover of a set V of nodes if V =
Sp
l=1 Cl. A clique

cover is minimal if each Cl contains at least one node which
is not contained in any other clique Cl0 , l

0 = 1; : : : p, l0 6= l.

Proposition 8: Let jxVk;s j � mk be a resource constraint
of Q, and fCl j l = 1; : : : ; pg be a minimal clique cover
of Vk;s, where each Cl represents a clique made by tim-
ing edges. Furthermore, for each v 2 Vk;s, let pv denote
the number of cliques that contain v. When p � mk, the
following expression is a valid inequality of Q:

X
v2Vk;s

cvxv � mk (14)

where cv = maxf1;mk + pv � pg, and p � mk

Proof: First we partition Vk;s according to the value
of cv in the following way:

U = f v 2 Vk;s j cv = 1g (15)

W = f v 2 Vk;s j cv > 1 g (16)

Since the cliques Cl, l = 1; : : : ; p cover Vk;s, each node
v 2 Vk;s belongs to at least one clique; which implies:

pv � 1 (17)

For any feasible schedule Q � V , let V 0 = U \ Q, and
V 00 = W \ Q. A feasible schedule does not include more
than one node from any clique Cl, l = 1; : : : ; p. Therefore,
in order for the nodes in V 0[V 00 to be in a feasible schedule,
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there must exist at least
P

v2V 0[V 00 pv cliques. Thus we can
write: X

v2V 0[V 00

pv � p (18)

We can use the relations (17) and (18) in the following
derivation to complete the proof:

X
v2Vk;s

cvx
Q
v = jV 0j+

X
v2V 00

cv

= jV 0j+
X
v2V 00

(pv +mk � p)

= jV 0j+
X
v2V 00

pv + jV
00j(mk � p)

�
X

v2V 0[V 00

pv + jV
00j(mk � p) using (17)

� p+ jV 00j(mk � p) using (18)

= mkjV
00j � p(jV 00j � 1)

� mkjV
00j �mk(jV

00j � 1) since p � mk

= mk

So far we have shown that the inequality (14) is valid; to
show that it is strong, a more elaborate analysis is required.
This will be the topic of the rest of this section.
If, in the de�nition of PF (Q), we change the equality

sign of the assignment constraints into � then we will get
the fractional monotone scheduling polytope, as described
below:

PF ( ~Q) = fx 2 RjV j+ jMax = 1 ; Mpx � 1 ; Mrx � m g

In the above equation ~Q can be thought of as the set of all
the partial schedules.
Proposition 9: The extended resource constraint,P
v2Vk;s

cvxv � mk, cv = maxf1;mk + pv � pg, de�nes

a facet of PI (S), where S = fx 2 ~Q j xv = 0 ; 8 v 62 Vk;s g.
Proof: Clearly dim(PI (S)) = jVk;sj. Thus the propo-

sition can be proved by exhibiting jVk;sj linearly indepen-
dent points in F = fx 2 PI (S) j

P
v2Vk;s

cvxv = mk g.

Consider the clique cover fCl j l = 1; : : : ; pg of Vk;s used
to generate the extended resource constraints (14). Since
the cover is minimal, every clique Cl has at least one node
vl that does not belong to any other clique, and let U 0 =
f vl; l = 1; : : : ; p g. From (15) it can be seen that U 0 is an
independent set of U of size p. Suppose U 00 � U , such that
jU 00j = mk +1. The points are found in the following way:

(i) xJu ; 8 u 2 W , where, Ju = fug [ Y , such that
Y � U 0, and jY j = mk � cu. There are jW j of them.
(ii) xJu ; 8 u 2 U n U 0, where, Ju = fug [ Y , such that
Y � U 0, and jY j = mk � 1. There are jU j � jU 0j of
them.
(iii) xJu ; 8 u 2 U 00, where, Ju = U 00 n fug. There are
jU 00j of them.
(iv) xJu ; 8 u 2 U 0 n U 00, where Ju = fug [

�
U 00 n

fu1; u2g
�
. There are jU 0j � jU 00j of them.

From the description of the points above, it can be seen
that there is only one point for each u 2 W , and u 2
U n U 0. Hence, the points described in the �rst two items
are linearly independent among themselves and with the
rest of the points. So, if we can prove that the points given
in the last two items are linearly independent, then we
are done. If we write down those x vectors as the rows of a
matrix, the resulting jU 0j�jV j matrix can be written, after

proper interchange of columns, as

�
I1 0 0
I2 I3 0

�
, where,

I1 is a jU 00j � jU 00j matrix of 1's with zeros in the di-
agonal.
I2 is a (jU 0j � jU 00j)� jU 00j matrix with 0's in the �rst
two columns and 1's in the rest of them.
I3 is a (jU 0j � jU 00j)� (jU 0j � jU 00j) identity matrix.

I1, and I3 are full rank matrices. Therefore, the matrix
has full rank, which means that the row vectors are linearly
independent.
Since the extended constraint is a facet of PI(S), it can
be augmented to a facet of PI( ~Q) by lifting[10] on the set
V nVk;s. The above discussion leads to the conclusion that
the inequality (14) is strong.
An important issue not addressed in this section is that of

separation { for a given fractional point x̂, �nd an inequality
of the form (14) violated by x̂ or demonstrate that no such
inequality exists. In the examples we have tried so far,
the inequalities of the form (14) could be quickly examined
using an exhaustive search. However, heuristic procedures
are commonly used for solving separation problems, and
further research is needed to develop a suitable heuristic
for separating the inequalities discussed above.

VIII. An Objective Function

The formulation (ILP), described in Section V, can be
used with any objective function c. However, the choice of
the objective function depends on the design goal and can
vary widely. As an example, in this section we describe
a particular objective function that helps to reduce the
register usage.

A. An Approximate Objective Function

Consider an operation and its need for registers. An op-
eration that is not chained to its successor needs a register
to store its output after it �nishes execution. If this opera-
tion needs only one input variable (in case of a binary op-
eration, the other input may be a constant), then it needs
only one register to store its input until it starts execu-
tion. Since this operation needs one register both before
and after execution, scheduling the operation early or late
will not a�ect the register count. However, if the operation
needs two input variables, it would require two registers to
hold its input as opposed to one at the output; therefore,
it seems proper to schedule the operation as early as pos-
sible to minimize register usage. We used this intuition to
formulate and minimize the following objective function:

cx =
X
i2I

(ci � 1)
X
s2Si

sxi;s (19)



468 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 4, DECEMBER 1994

where ci is the number of input variables used by operation
oi. Note that this objective function does not optimally
minimize the register count, but produces satisfactory re-
sults as will be shown in the results section.

B. An Exact Computation of the Number of Live Variables

If the number of live variables across any control step
boundary has to be optimally minimized, additional con-
straints must be added to the original formulation. These
constraints are not structured, and therefore make the for-
mulation take longer time to �nd the result. In the rest of
this section we will consider the constraints that represent
the maximum number of live variables.
Live variable constraints were �rst used by Gebotys in

the OASIC system [8]. Compared to OASIC, the method
presented here leads to fewer constraints and a sparser con-
straint matrix.
Consider any particular control step s, and a partial or-

der pair oi ! oj . Whether this partial order will lead to
a live variable between control steps s and s + 1 can be
indicated by the following expression, which evaluates to 1
in case of a register, and to 0 otherwise:

ri;j;s ,
X

s0�s;s02Si

xi;s0 +
X

s0>s;s02Sj

xj;s0 � 1 (20)

To verify the correctness of the expression, two cases need
to be considered:
1. If oj is not scheduled after control step s (second term
is 0), then a register is not needed between s and s+1.
In this case, due to the timing constraints, oi must be
scheduled at or before control step s (�rst term is 1),
and thus the expression evaluates to 0.

2. If oj is scheduled after control step s (second term is
1), then a register is required only if oi is scheduled at
or before control step s (�rst term is 1), in which case
the expression evaluates to 1.

If each operation has no more than one output edge in
the cdfg graph, then the following constraint indicates that
there can be no more than r live variables across any control
step: X

i 2 I

oi ! oj

ri;j;s � r 8 s 2 S (L)

In practice, the output of an operation often goes to sev-
eral other operations, so one lifetime de�ning edge has to
be found. Transitive reduction [25] and ALAP-analysis has
been used in OASIC [8] to discard the edges that do not
de�ne the lifetime of a variable. When no such reduction
is possible, constraints are generated for each possible out-
put edge. Thus the number of constraints at a control
step is the product of the number of output edges of the
operations. This can give rise to a large number of con-
straints when many operations in the same control step
have multiple output edges. This is not the case for the
EWF benchmark, but a problem in case of the DCT exam-
ple. Therefore, we propose the following method that will
reduce the number of constraints.

After all the edges that do not de�ne a variable have
been discarded, we add a dummy node for each remain-
ing operation oi with multiple output edges. The dummy
node has to be scheduled after the operations that receive
the output of oi. The edge between oi and di is consid-
ered as the lifetime de�ning edge, and other output edges
of oi are not regarded for live variable constraints. This
approach will produce additional assignment and timing
constraints which are well structured, and reduce the num-
ber of unstructured live variable constraints. Furthermore,
this approach will reduce the number of the constraints.

IX. Results

We have proven in Section V-B that our formulation
(ILP) produces tight bounds on the objective function, and
constitutes a well-structured model for solving a schedul-
ing problem. The RCS and TRCS problems lead directly
to the formulation (ILP). The UCS and TCS problems can
also be solved using (ILP), along with a good set of lower
bounds on the number of FU's as indicated in Section V-A.
In this section, we �rst present results of solving the

TRCS problem using formuation (ILP) on two bench-
mark examples: the 34-operation elliptical wave �lter
(EWF) [30], and the 48-operation discrete cosine transform
(DCT) [31]. The purpose of these results is to demonstrate
that the formulation (ILP) is well-behaved, and to allow us
to observe the general behavior (tight bounds, and there-
fore small number of branches) that was indicated by our
theoretical analysis.
It should be noted here that any ILP approach produces

optimal results, so we can not expect our schedules to be
better than other ILP solutions. Instead, our objective was
to o�er a theoretical foundation for evaluating the behavior
of an ILP formulation. Thus for our purposes, we will use
the number of branches taken by the ILP solver as the
indicator of performance. We will demonstrate that the
number of branches are small, as we predicted in Section V.
Of course, these results might vary somewhat if another
ILP solver was used instead.
In these examples, we used the standard assumptions:

the delay of the ALU is one control step, the delay of the
multiplier is two control steps, and the pipelined multiplier
has a latency of one control step. The columns labeled
LV gives the maximum number of live variables across any
control step, and can be considered as the number of reg-
isters. The columns labeled Branch indicate the number
of nodes in the branch-and-bound tree for solving a partic-
ular problem instance. The ILP formulations were solved
using LINDO [32] optimization software on a SPARC 2
workstation.
For the EWF benchmark, we �rst solved the formulation

(ILP) with objective function (19) (no register constraints),
which attempts to minimize the number of registers. In
all cases the optimal number of registers was produced.
This number was veri�ed later by adding the register con-
straints (L) to the formulation, so that the exact number
of live variables across any cstep could be computed and
minimized. These results are shown in Table I.
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TABLE I

Scheduling Results for the Elliptic Wave Filter (with

Register Constraints)

No. of Non-Pipelined Pipelined
csteps Mult Mult

Total Loop ALUMul LV Branch ALUMul LV Branch

17 17 3 3 10 0 3 2 10 0

18 18 2 2 10 0 3 1 10 0

2 2 9 2

18 16 3 2 10 0 3 1 10 1

19 19 2 2 9 3 2 1 9 3

19 17 2 2 9 4 2 1 9 3

21 21 2 1 9 0 2 1 9 12

21 19 2 1 9 0 2 1 9 10

TABLE II

Size and Solution time of the Formulations

Csteps Var Eqn CPU-time (s) Pivots

17 85 99 0.68 79

18 123 144 1.35 150

19 161 193 3.08 263

21 237 291 8.9 551

Table II summarizes the size and solution time of the
formulation (ILP) for the EWF benchmark. Column Eqn
indicates the total number of constraints (including regis-
ter constraints). Column Pivots indicates the number of
simplex pivots performed to produce the �nal solution, and
is provided for informational purposes only; direct compar-
ison with other ILP-based schedulers (such as OASIC and
GRAD) is not possible at this point because the machines,
ILP-solvers and details of the ILP formulations vary from
system to system.
The scheduling results of the DCT benchmark are pre-

sented in Tables III and IV. Table III shows the solution of
(ILP) with objective function (19) (no register constraints).
As predicted, the solution was produced in a small number
of branches; however, the number of registers occasionally
is not optimal. When register constraints were added, the
schedules with optimal number of registers were produced,
as shown in Table IV. However, as can be seen, much more
branching was required since the formulation became more
unstructured due to the addition of the register constraints.
Although our analysis suggests that the TCS and UCS

problems should be solved using formulation (ILP), these
problems can be solved directly if the number of FU's are
treated as variables as discussed in Section V. We solved
the TCS problems in this manner, and let the ILP solver
choose the branch-and-bound-tree.
In keeping with our observation, these TCS formula-

tions took a larger number of branches (and a longer time)
to �nd the optimal solution. The deterioration in per-
formance was not noticable for the EWF benchmark: to
generate schedules of 17, 18, 19 and 21 csteps using non-

TABLE III

Scheduling Results for the Discrete Cosine Transform

Example (without Register Constraints)

No. of Pipelined Non-Pipelined
csteps Mult Mult

ALUMul LV Branch ALUMul LV Branch

7 6 5 12 1 6 8 11 1

8 5 4 12 1 5 6 13 4

9 4 3 13 2 4 6 13 1

9 4 4 13 1 5 6 13 0

9 5 4 12 1 5 7 0

TABLE IV

Scheduling results for the Discrete Cosine Transform

Example (with Register Constraints)

No. of Pipelined Non-Pipelined
csteps Mult Mult

ALUMul LV Branch ALUMul LV Branch

7 6 5 12 1 6 8 11 2

8 5 4 12 9 5 6 11 19

9 4 3 12 12 4 6 13 12

9 4 4 11 18 5 6 12 15

9 5 4 11 27 5 7 12 30

pipelined multipliers, the TCS formulation took 0, 0, 4
and 5 branches, respectively. However, for the DCT bench-
mark, in the case of schedules of 7 and 8 control steps using
non-pipelined multipliers, the TCS formulation took 8 and
780 branches, respectively. Fortunately, the same solutions
could be computed much faster by �rst using an e�cient
lower-bounding scheme [26] (which exploits the structure
of the resource constraints), and then solving formulation
(ILP); this method took only 1 and 9 branches, respec-
tively.
These results indicate that although any ILP formulation

theoretically leads to optimal results, a careful choice based
on theoretical study should be made to avoid explosion in
computation time.

X. Summary and Conclusion

In this paper, we have presented a mathematical analysis
of the ILP constraints of the scheduling problem, and have
shown how to exploit the structure of the constraints in a
well-designed formulation, so that e�cient results can be
expected. We have shown that even if all types of schedul-
ing problems can be described as ILP's using a reasonable
number of constraints and integer variables, some of them
have better structure than others. These theoretical obser-
vations have been veri�ed on benchmark examples.
One challenge to future improvement of ILP-based

scheduling algorithms lies in �nding new strong valid in-
equalities that can be used to tighten the formulation. We
have shown that the resource-assignment polytope de�ned
by the resource and assignment constraints, and the poly-
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tope de�ned by the timing and assignment constraints, are
integral. This clearly shows that in order to �nd tighter
constraints, the interaction between the resource and the
timing constraints has to be considered. We have pre-
sented a class of such constraints in Section VII-B and have
demonstrated using polyhedral theory that such inequali-
ties are tight. An extension of this method still remains as
a promising area of further investigation.
We have also presented a method to modify the conven-

tional ASAP and ALAP algorithms in order to determine
the schedule interval of each operation. Such preprocessing
schemes are very important for improving the solving ef-
�ciency of the ILP formulations [22]. These modi�cations
can also help in improving the solution quality of other
heuristic methods such as force-directed-list-scheduling [7].
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Appendix

I. Proof of Claim 2

Claim 2: The skeleton digraph Gs is acyclic
Proof: Any arc a, denoted as b ! c, in a digraph

represents a distance �(a) = c � b between nodes b and
c. We can calculate the distances produced by the arcs
in the cdfg and Gs as follows, �(aij) = j � i, �(aijs) =
(j � i; dij � 1) = (�(aij); dij � 1), and �(aiis) = (0;�1).
If we denote the distance produced by a set L of arcs as

�(L) =
P

a2L �(a), then for Gs we can write:

�(L) =
X

aijs2L

(�(aij); dij � 1) +
X

aiis2L

(0;�1)

The arcs in L can form a cycle only if �(L) = 0, for which
the above equation requires:

P
aijs2L

�(aij) = 0. This

implies that the set of arcs faij jaijs 2 Lg form a cycle
in the cdfg. Since the cdfg does not contain any positive
length cycle,

P
aijs2L

dij < 0. This condition can be used

in the expression for �(L) to conclude that �(L) < (0; 0).
Therefore, no set of arcs L can form a cycle in Gs.

II. Proof of Theorem 2

Theorem 2: Any maximal clique constraint of Gc is a
linear combination of constraints (A) and (T).

Proof: The maximal clique constraint for clique C

is given in (5), where LC is a maximal path in Gs such
that V (LC) = V (C). It can be easily seen, that any max-
imal path in Gs can be uniquely described by listing all
the timing arcs in the order they appear in LC . We de-
scribe, without loss of generality, such a list as: ailil+1sl ,
l = 1; : : : k.
To visualize LC , let:

s01 = maxfs j s 2 Si1g

s0l+1 = sl + dilil+1 � 1 for l = 1; : : : ; k

sk+1 = minfs j s 2 Sik+1g

LC begins at node (i1; s
0
1) and ends at node (ik+1; sk+1).

For each l, l = 1; : : : k + 1, the path goes from (il; s
0
l) to

(il; sl) using assignment arcs ailils, sl < s � s0l. For each
l, l = 1; : : : k, the path goes from (il; sl) to (il+1; s

0
l+1),

using timing arc ailil+1sl . Therefore, we can write the clique
constraint for LC as:

jxV (LC)j =
k+1X
l=1

s0lX
s=sl

xil;s (21)

For compactness of derivation, we introduce the following
notations.

X<
il

=
X

s�s0
l
;s2Si

xil;s

X>
il

=
X

s�sl;s2Si

xil;s

The original expressions for jxV (Lil )j and jxV (Lilil+1sl )j
(given in (A) and (T)) can be represented using the new
notations as:

jxV (Lil)j = X>
il
+X<

il
�

s0lX
s=sl

xil;s

jxV (Lilil+1sl )j = X>
il
+X<

il+1

In the following derivation, we use the above relations to
show jxV (LC)j � 1.

1 �
kX
l=1

jxV (Lilil+1sl )j �
kX
l=2

jxV (Lil )j using (A), (T)

=

kX
l=1

�
X>
il
+X<

il+1

�
�

kX
l=2

jxV (Lil )j

= X>
i1
+X<

ik+1
+

kX
l=2

�
X>
il
+X<

il
� jxV (Lil )j

�

=

s01X
s=s1

xi1 ;s +

s0k+1X
s=sk+1

xik+1;s +

kX
l=2

s0lX
s=sl

xil;s

=

k+1X
l=1

s0lX
s=sl

xil;s

= jxV (LC )j using (21)
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