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Computing Lower Bounds on Functional Units
Before Scheduling1

Samit Chaudhuri2, Robert A. Walker3

Abstract|This paper presents a new polynomial-time al-
gorithm for computing lower bounds on the number of func-
tional units (FUs) of each type required to schedule a data
ow graph in a speci�ed number of control steps. A formal
approach is presented that is guaranteed to �nd the tight-
est possible bounds that can be found by relaxing either
the precedence constraints or integrality constraints on the
scheduling problem. This tight, yet fairly e�cient, bound-
ing method can be used to estimate FU area, to generate
resource constraints for reducing the search space, or in con-
junction with exact techniques for e�cient optimal design
space exploration.

I. Introduction

One of the central problems in high-level synthesis is the
scheduling problem { the problem of mapping operations
onto control steps in the proper order. The process of solv-
ing the scheduling problem can be viewed as the process
of exploring a 2-dimensional (2D) design space, with axes
representing time (schedule length) and area (ideally total
area, but often simpli�ed to functional unit area). This 2D
design space is shown in Figure 1, where feasible designs
lie in the shaded region, infeasible designs lie in the white
region, and optimal designs lie on the curve between the
two regions.
A variety of methodologies can be used to explore this

design space. If optimal solutions are required, then ex-

act techniques, such as ILP formulations [1], [2], must be
used. However, exploring the entire design space with exact
techniques can be extremely time consuming, so in prac-
tice a more e�cient methodology may be required. One
such methodology uses heuristic algorithms to quickly de-
rive two bounds on the optimal solutions : a lower bound
(which may be infeasible) and an upper bound (which must
be feasible).
Although these lower bounds do not necessarily corre-

spond to feasible designs, they can still provide much valu-
able information during the design process. For example,
the lower bounds provide an estimate of the FU area re-
quired for a design. They can also be used to add resource
constraints to a Time-Constrained Scheduling (TCS) prob-
lem, reducing the size of the feasible region of that problem
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Fig. 1. The Design Space for the Scheduling Problem

so that it can be solved more quickly. Finally, they can be
used together with heuristic scheduling algorithms (which
produce upper bounds) for e�cient optimal design space
exploration: if those two simple approaches produce the
same result, then that result is optimal, and the search is
complete; only in those cases when the two di�er must a
more time-consuming exact technique be used instead.

A. Formulating the FU Lower-Bounding Problem

This Functional Unit Lower-Bounding (FU-LB) problem
derives from the Functional Unit Minimization (FU-Min)
problem: given a Data Flow Graph (DFG) and a time
constraint c on the schedule length, compute the minimum
number m�

k of FUs needed for any feasible schedule, for
each FU-type k 2 K (the set of functional unit types).
Unfortunately, the FU-Min problem is NP-hard, so there
is little hope of �nding a polynomial-time solution.

However, an easier problem, called the Functional Unit
Lower-Bounding (FU-LB) problem, can be formulated to
compute a lower bound m�

k onm�
k. The goal is then to solve

this easier problem, preferably in polynomial time, and to
use the results for more e�cient design space exploration.

Unfortunately, there is no single, unique FU-LB problem.
A FU-LB problem is formed by relaxing some constraints
of the original FU-Min problem, and di�erent relaxations
produce di�erent FU-LB problems: some easier to solve,
some harder; some producing tighter bounds, some looser.
A comprehensive design space exploration system should
therefore provide a \suite" of e�cient solutions to a variety
of FU-LB problems, and allow the designer to choose the
appropriate algorithm for the task at hand (see Table I).
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Precedence LP- Tightest
Relaxation Relaxation Prec. Relaxation

Quality Fairly Usually Guaranteed
of Bounds Tight Tightest Tightest
Complexity O(c2n) Solve 1 LP Solve 2 LPs
of Solution (polynomial) (polynomial)

TABLE I

Different Approaches to FU Lower-Bounding

A.1 Forming FU-LB Problems by Precedence Relaxation

One approach to forming a FU-LB problem from the
FU-Min problem is to relax the precedence constraints be-
tween operations. The simplest method for relaxing the
precedence constraints is to eliminate them completely, as
was done by Jain et al. in [3]. Although the resulting
FU-LB problem can be solved quickly, it can produce very
loose bounds, as was later demonstrated by Sharma and
Jain in [4]. A similar relaxation was used by K�u�c�uk�cakar
for estimating FU area in [5].
A tighter scheme for relaxing the precedence constraints

and solving the resulting FU-LB problem is based on a
theorem originally given by Fern�andez and Bussell in [6,
Theorem 1]. Briey, that technique considers each cstep
interval [s; t] between 1 and c, and calculates the minimum
load lks;t in each interval; this minimum load lks;t is com-
puted by moving the operations within their schedule in-
tervals so that they have a minimum possible overlap with
[s; t], and summing all the overlaps. A lower bound m0

k on
the number of functional units for each FU-type k 2 K can
then be computed as

m0
k = max

[s;t]�[1;c]
fdlks;t=(t� s+ 1)eg: (1)

In high-level synthesis, Fern�andez & Bussell's theorem has
been used by Sharma and Jain [4], by Ohm et al. [7], and by
Hu et al. [8], [9] to compute lower bounds on the number of
FUs 1. Rabaey and Potkonjak [11] also produce the same
bounds, although using a di�erent method.
As illustrated in Figure 2, both of the approaches de-

scribed in [3] and [4] �rst give an algorithm, and then prove
that the algorithm indeed produces a lower bound. There-
fore, each of these algorithms must be solving a particular
FU-LB problem, but we do not know the position of each
problem in the range of possible problems, and thus we do
not know the quality of the bounds that might be expected.

A.2 Forming FU-LB Problems by LP-Relaxation

Another approach, resulting in a di�erent type of FU-
LB problem, is based on the fact that the FU-Min problem
can be formulated as an Integer Linear Program (ILP), as
shown in the next section. In the worst case, solving an
ILP formulation takes exponential running time.
However, an ILP can be relaxed by dropping the inte-

grality restrictions on the variables. This relaxed problem,

1Although their problems were not presented as relaxations, we
proved in [10] that the same bounds can be produced by solving the
precedence relaxation.
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lem

called the LP-relaxation of the original ILP, can be solved
in polynomial time, and provides a lower bound on the
solution to the original problem.

This method was used by Gebotys in [1], where the LP-
relaxation of the FU-Min problem was used to compute
lower bounds on the number of functional units (thus solv-
ing a FU-LB problem). In all of her benchmark examples,
this method found the exact bounds (i.e., bounds that ex-
actly match the the optimal solution) by solving only a
single LP-relaxation, as shown in the column labeled LP-

Relaxation in Table I. However, there is no guarantee that
this method will always produce exact bounds.

A.3 Our Approach { Forming an FU-LB Problem as the
Tightest Possible Precedence Relaxation

In Rensselaer's Voyager design space exploration sys-
tem [12], we take yet another approach, although one also
based on precedence relaxations (see the column labeled
Tightest Prec. Relaxation in Table I). Voyager's solution ap-
proach can be summarized as follows (see Figure 3). We
begin with a formal description of the FU minimization
problem (FU-Min), and form a generic problem by re-
laxing the precedence constraints. This generic problem
concisely describes all possible FU-LB problems based on
precedence relaxations, including those solved by the pre-
vious methods. We then we select the one FU-LB problem
that produces the tightest bound, and solve that FU-LB
problem in polynomial time (by solving at most two LPs).
Thus Voyager's approach formalizes an entire class of FU
lower-bounding problems (those based on precedence relax-



CHAUDHURI AND WALKER: COMPUTING LOWER BOUNDS ON FUNCTIONAL UNITS 3

ations), and is guaranteed to produce the tightest possible
bounds of any precedence relaxation.
It is more di�cult to compare Voyager's approach to

the LP-relaxation approach. In our experiments (see Sec-
tion VI), both approaches always found exact bounds.
However, in Section V, we show that the bound obtained
by rounding up the solution of the LP relaxation of the
FU-Min problem may be as tight as the bound produced
by Voyager's approach, but is not guaranteed to always be
that tight. Thus Voyager's approach provides a guaranteed
solution quality, at the cost of solving only one additional
LP.
The remainder of this paper is organized as follows. In

Section II, a formal description of the FU lower-bounding
problem is presented in equation (LBPk). Although our
method for solving (LBPk) is straightforward, the proof
of its correctness requires an elaborate theoretical develop-
ment which is presented in the next three sections: Sec-
tion III introduces an extended problem (Ek), Section IV
discusses the cost function of (Ek), and its implications
that lead to the lower-bounding method described in Sec-
tion V. Experimental results are presented in Section VI.

II. Formal Description of the FU
Lower-Bounding (FU-LB) Problem

This section presents an integer linear programming
(ILP) formulation of the FU lower-bounding problem. The
constraints of the ILP are similar to those of the scheduling
problem, and have been used by several ILP-based sched-
ulers [13], [1], [2].
Given a Data Flow Graph (DFG), let the set of all op-

erations be denoted as foi j i 2 Ig, where I = f1; : : : ; ng is
the index set of all operations. Let oi ! oj denote a prece-
dence relation, meaning operation i must �nish execution
before operation j can start.
Suppose the DFG is to be scheduled onto a set S =

f1; : : : ; cg of control steps. Let asapi (resp. alapi) denote
the as-soon-as-possible (resp. as-late-as-possible) control
step (cstep) into which operation oi can start execution.
The control step interval Si = [asapi; alapi] is then referred
to as the schedule interval of operation oi.
Let the type of a functional unit (FU) indicate its func-

tionality (e.g., multiplication, or addition). Let K be the
set of types that are available and let mk be the number of
functional units of type k 2 K. The types of the operations
are determined by the type function � : I ! K, where
�(i) = k means operation oi is executed on a functional
unit of type k. By using the function � , we have implicitly
assumed that each operation can be scheduled on only one
type of FU. Thus each FU-type k must execute all opera-
tions with index set Ik = f i j i 2 I ; �(i) = k g, and fIkg
for k 2 K is a partition of I .
The FU Minimization (FU-Min) problem then �nds the

minimum value of mk for a particular k 2 K, and can be
formulated as:

m�
k = minmk;

subject to:

X
s2Si

xi;s = 1 8 i 2 I; (A)

X
i2Ik

xi;s � mk 8 s 2 S ; k 2 K; (R)

X
si�s; si2Si
sj�s; sj2Sj

(xi;si + xj;sj ) � 1 8 s 2 Si \ Sj ;

8 oi ! oj ;

(P)

xi;s 2 Z+ 8 i 2 I; s 2 Si:

Let Ma be the coe�cient matrix due to the assignment
constraints (A), Mr be the coe�cient matrix due to the
resource constraints (R), and Mt be the coe�cient matrix
due to the precedence constraints (P). Then the FU-Min
problem can be represented more concisely in the following
form:

m�
k = min fmk jMtx � 1 ; x 2 Rk g; (MPk)

where

Rk = fx 2 PF (Rk) j x integerg; and (2)

PF (Rk) = f [x;mk] 2 R
n+1
+ jMax = 1; Mrx �mg: (3)

As mentioned earlier, this problem is similar to the TCS
problem, so it is NP-hard [14]. Therefore in order to �nd
the lower bound e�ciently, we have to consider a relax-
ation [15] of (MPk). A number of di�erent relaxations
of (MPk) are possible, each of which produces a lower
bound on m�

k and represents a valid FU-LB problem. Our
goal was to �nd the tightest possible lower bound that could
be found by relaxing the precedence constraints of (MPk).
The following equation presents a generic prob-

lem GLBPk(�) which produces a lower bound on m�
k for

each nonnegative value of � :

mk(�) = min fmk + �(Mtx� 1) j x 2 Rkg: GLBPk(�)

where � is a vector of positive real numbers. Note that
problem GLBPk(�) does not explicitly contain the prece-
dence constraints. Instead, they have been included in the
objective function with the penalty term �(Mtx�1). Since
� � 0, violations of the precedence constraints will make
the penalty term positive, and thus intuitively Mtx � 1

will be satis�ed if � is suitably large.
It can be easily seen that mk(�) � m�

k for all � � 0; in
other words,mk(�) provides a lower bound onm�

k. For this
reason, we refer to GLBPk(�) as a generic FU-LB problem.
Solving the problem

m�
k = max

��0
mk(�) (LBPk)

then gives the largest lower bound m�
k possible of the in�-

nite number of lower bounds fmk(�) j � � 0g. Therefore
m�

k is the tightest lower bound that can be found by relax-
ing the precedence constraints.
In the solution of GLBPk(�), although the elements of

x have to be integral, the elements of � can be fractional.
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The cost function f is linear, and will be discussed in detail
in Section IV.
It is easy to see that the extended problem (Ek) is a lin-

ear program (LP), and therefore can be solved in polyno-
mial time. Thus although the alternative problem (APk)
is not polynomially solvable, we are able to extend it to
problem (Ek), which can be solved in polynomial time.
However, it remains to be shown how the optimal solu-
tion of (Ek) can be used to compute the desired bound
dm�

ke.

Step 3: Using the Solution of (Ek) to Compute dm�
ke

Unlike the previous problems in the road-map, the ex-
tended problem (Ek) does not contain the variablemk, and
also minimizes a new cost function f(y). Nevertheless, the
optimal solution of (Ek) can be used to indirectly compute
the value of dm�

ke, by solving at most two linear programs.
This e�cient solution is due to a careful choice of the cost
function f(y) for (Ek), which is discussed in the next sec-
tion. The method for computing dm�

ke using the optimal
solution of (Ek) is then presented in Section V.

IV. Cost Function of the Extended Problem (Ek)

As mentioned earlier, our objective is to �nd a
polynomial-time algorithm for the original FU lower-
bounding problem (LBPk). Unfortunately, neither (LBPk)
nor its equivalent, the alternative problem (APk), are di-
rectly solvable in polynomial time. Therefore, we have
taken an indirect approach and have extended (APk) to
formulate an extended problem (Ek), which is solvable in
polynomial time and can be used to compute the desired
bound dm�

ke.
However, (Ek) does not contain the variable mk, more-

over it minimizes a new cost function f(y). Therefore
f(y) must be de�ned in such a way that minimizing f(y)
has a similar e�ect as minimizing mk in the original prob-
lem (APk). In this section, we �rst de�ne the cost func-
tion f(y), and then discuss two important implications of
choosing such a cost function for the problem (Ek). Those
implications are then used in the Section V to prove that
the optimal solution of (Ek) can be used to compute dm�

ke.
First, we de�ne the cost function f(y) as

f(y) =

mkX
j=1

cj
X
s2S

ys;j ; (4)

where

cj =

8><
>:
0; j = 1; : : : ;mk;

1 + (
jIkj

j � 1
� 1)

j�1X
i=1

ci; j = mk + 1; : : : ;mk:(5)

The quantity mk in the above equation serves as a prelim-

inary lower bound, and can be computed as d jIkjjSj e.

The �rst important implication of f(y) is that when f(y)
is used as the cost function, it is su�cient to study only
those optimal solutions of (Ek) that satisfy a special form.
This special form is given in Lemma 1, and is crucial for

proving that an optimal solution of (Ek) leads to the de-
sired bound dm�

ke. For a concise description of the special
form, we use the notation [p] to denote, for any real number
p � 1, the vector

[p]i =

(
1; i = 1; : : : ; bpc;

p+ 1� dpe; i = dpe;
(6)

where p � 1.

The second term in the above equation, i.e., the value of
[p]i at i = dpe, evaluates to 1 when p is an integer, and to
the fractional part of p when p is a fraction.
The special form of a feasible solution of (Ek) is denoted

as [x; z(x)], and is described in the following Lemma.
Lemma 1: If [x;y] is a feasible solution of (Ek), then

[x; z(x)] is also feasible in (Ek), and f(z(x)) � f(y), where
z(x) is de�ned as

zs;j(x) =

(
[us(x)]j ; j = 1; : : : ; dus(x)e;

0; otherwise;
(7)

where

us(x) =
X
i2Ik

xi;s: (8)

Proof: Given in Appendix I.
Corollary 1: If [~x; ~y] is an optimal solution of (Ek), then

[~x; z(~x)] is also an optimal solution of (Ek).
Informally, Lemma 1 and Corollary 1 suggest that, when
we are interested in the optimum solutions of (Ek), it is
su�cient to consider only the feasible solutions of the form
[x; z(x)].
Next we present the second important implication of the

cost function f(y): the costs of the feasible solutions (of
the special form) are not arbitrary, instead they follow a
nicely ordered pattern according to their FU-usage. The
FU-usage is de�ned to be the maximum number of k-type
operations performed in any control step, and is expressed
as m(x) in the equation

m(x) = maxfus(x) j s 2 Sg; (9)

where us(x) is the number of k-type operations performed
in control step s, and is de�ned in (8).
The cost f(z(x)) of all the feasible solutions [x; z(x)]

of (Ek) having the same FU-usage m(x) are bounded
from above and below by two quantities fmax(m(x)) and
fmin(m(x)), as stated in the following Lemma:
Lemma 2: The cost f(z(x)) of any feasible solution

[x; z(x)] of problem (Ek) is bounded as

fmin(m(x)) � f(z(x)) � fmax(m(x));

where the values of fmax and fmin at any p � 1 are

fmin(p) =

dpeX
j=1

cj [p]j ; and (10)

fmax(p) =
jIk j

p
fmin(p): (11)
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Proof: Given in Appendix II.
Furthermore the bound functions fmax and fmin satisfy

interesting monotonic properties described in the following
Lemma.
Lemma 3: For p0 > mk, the values of functions fmax and

fmin de�ned in (10) and (11) satisfy the following relations:

fmax(p) � fmax(p
0); for p � p0; (12)

fmin(p) � fmin(p
0); for p � p0; (13)

fmin(p) = fmax(p� 1) + 1; for integer p: (14)

Proof: Given in Appendix III.
From Lemma 2, and inequality (12) and (13), we can

make the informal observation that the bounds fmax and
fmin on the cost of feasible solutions of (Ek) increase mono-
tonically with the FU-usage of the respective solutions.
As our goal is to compute dm�

ke, we are actually inter-
ested in the behavior of the cost function when FU-usages
are integers. This behavior is implied by (14), and can be
illustrated with an example: Let [x1; z(x1)] and [x2; z(x2)]
be two feasible solutions of (Ek) such that their FU-usages
m(x1) and m(x2) are integers. If m(x1) > m(x2) then
Lemma 2 and (14) suggest: the cost of [x1; z(x1)] is strictly
greater than that of [x1; z(x1)], i.e., f(z(x1)) > f(z(x2)).
Thus when FU-usages are integers, a higher FU-usage re-
sults in a strictly higher cost, and intuitively, minimizing
the cost function should have a similar e�ect as minimizing
the FU-usage.
In this section, we have presented the cost function f(y),

and have informally explained why minimizing f(y) also
produces the e�ect of minimizing FU-usage m(x). There-
fore we can expect to minimizemk by solving (Ek), and the
next section will prove that it is indeed possible to compute
dm�

ke by solving (Ek) at most two times.

V. Computing the Lower Bound dm�
ke Using the

Extended Problem (Ek)

In this section, we discuss how to compute the intended
lower bound dm�

ke by solving the extended problem (Ek).
The bound dm�

ke is de�ned as the ceiling on the opti-
mal solution of problem (LBPk) or its equivalent alterna-
tive problem (APk). It is possible to compute this bound
indirectly by solving problem (Ek) only if there exists a
correspondence between the feasible solutions of (Ek) and
those of (APk). This correspondence is established in the
following lemmas.
Lemma 4: If [x;mk] is a feasible solution of (APk), then

[x; z(x)] is a feasible solution of (Ek).
Proof: Given in Appendix IV.
Corollary 2: If [x;mk] is a feasible solution of (APk),

then f(z(x)) � f(z(~x)); where [~x; ~y] denotes an optimal
solution of (Ek).
Lemma 5: If [x;y] is a feasible solution of (Ek), then

[x;m(x)] is a feasible solution of (APk).
Proof: Given in Appendix V.

1) Compute [~x; ~y] by solving (Ek);

2a) if m(~x) integer then

dm�

k
e = m(~x);

else

2b) set ys;j = 0, for j = bm(~x)c + 1; : : : ;mk, 8 s 2 S

and solve (Ek) again;

if (Ek) yields a solution then

dm�

k
e = bm(~x)c;

else

dm�

k
e = dm(~x)e;

end;

Fig. 5. Method for Computing dm�

k
e

Corollary 3: If [x;y] is a feasible solution of (Ek), then
m(x) � m(x�); where [x�;m�

k] denotes an optimal solution
of (APk).
Informally, Lemma 4 and 5 suggest: from a feasible solu-
tion of (APk), it is always possible to construct a feasible
solution of (Ek), and vice versa.
Although we have established a correspondence between

the feasible solutions of (APk) and (Ek), it remains to de-
termine the relation between the optimal solutions of those
problems. This relation is described in the following propo-
sition.
Proposition 4: Let [~x; ~y] be an optimal solution of (Ek),

and [x�;m�
k] be an optimal solution of (APk). Then

dm(~x)e � dm�
ke � bm(~x)c: (15)

Proof: Given in Appendix VI. It should be mentioned that
Corollary 2 and 3, as well as the implications of the cost
function, as have been presented in Lemma 1, 2, and 3 were
used to prove the above result.
It would be useful to make one further observation before

we present our method for computing dm�
ke. It is easy to

see that for an optimal solution [x�;m�
k] of (APk), at least

m(x�) FUs are needed to satisfy the resource constraints
(R). Therefore we can write

m(x�) = m�
k: (16)

We are now in a position to explain how to compute dm�
ke

using the solution of the extended problem (Ek). The
method is described in Figure 5; a detailed explanation of
each step, as well as the proof of the method's correctness,
are presented in the following.
1. Solve (Ek) with an LP-solver in order to compute

[~x; ~y]. It then immediately follows from Proposition 4
that dm�

ke is either dm(~x)e or bm(~x)c.

2a. If m(~x) is integer, since dm(~x)e = bm(~x)c = m(~x), we
can be certain that m(~x) = dm�

ke, and is the desired
bound.

2b. If m(~x) is fractional, set ys;j = 0, for j = bm(~x)c +
1; : : : ;mk, 8 s 2 S and solve (Ek) one more time. It
can be easily veri�ed from (7) and (9), that in this
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case (Ek) will yield a solution only if it has a feasible
solution [x;y] such that dm(x)e � bm(~x)c.

Suppose (Ek) yields a solution [x0;y0]. The argument
presented in the previous paragraph implies dm(x0)e �
bm(~x)c. Furthermore by Lemma (5), dm(x0)e � dm�

ke.
Combining these two inequalities: dm�

ke � bm(~x)c,
which in conjunction with (15) leads to the conclusion
dm�

ke = bm(~x)c.

On the contrary, if (Ek) does not yield a solution, then
we conclude dm�

ke = dm(~x)e. The proof can be given
by contradiction. Let us assume dm�

ke = bm(~x)c; sub-
stituting (16), we obtain dm(x�)e = bm(~x)c. At this
point we can invoke Lemma 4 and conclude that (Ek)
has a feasible solution [x�; z(x�)] such that dm(x�)e =
bm(~x)c. Then, however, (Ek) must yield a solution in
the second run, which contradicts our initial assump-
tion.

Thus, in both cases wherem(~x) is fractional, the value
of dm�

ke is determined after solving (Ek) a second time.
The method above demonstrates that the lower bound
dm�

ke on the number of FUs of type k can be computed
in polynomial time by solving the linear program (Ek) at
most 2 times.
Let us now consider the theoretical quality of the lower

bounds dm�
ke as compared to previous approaches based on

precedence relaxation. As discussed in Section II, the FU
lower-bounding problem (LBPk) was formulated in such a
way that it produces the tightest lower bound m�

k of all
possible lower bounds fmk(�) j � � 0g that can be found
by relaxing the precedence constraints. The lower bounds
by Sharma and Jain [4] are also computed by relaxing the
precedence constraints, and we have shown in [10] that
the algorithm in [4] computes mk(0) by solving the prob-
lem GLBPk(�) for � = 0. Since dm�

ke � mk(0), our ap-
proach will produce bounds that are at least as tight, if
not tighter, than the bounds in [4]. We have also shown
in [10] that the bounds produced by Rabaey and Potkon-
jak's approach [11] are the same as those of Sharma and
Jain [4], so again, our approach will produce bounds that
are at least as tight, if not tighter, than the bounds in [11].
Next we consider the solution of the linear programming

relaxation of (MPk), which also provides a lower bound
(mLP

k ) on m�
k. The LP relaxation of (MPk) is described as

mLP
k = min fmk jMtx � 1; x 2 PF (Rk) g: (LPk)

The feasible region, fMtx � 1; x 2 PF (Rk) g, of (LPk)
looks very similar to the feasible region, fMtx � 1; x 2
conv(Rk) g, of the alternative problem (APk). However,
since conv(Rk) � PF (Rk) (from (2) and (3)), the feasible
region of (APk) is a subset of the feasible region (LPk).
Therefore, the bound produced by (APk) must be as
tight or tighter than the bound produced by (LPk), i.e.,
mLP

k � m�
k. This implies dmLP

k e � dm�
ke, which means

that the bound obtained by rounding up the solution of
the LP relaxation of (MPk) may be as tight as the bound
produced by Voyager's approach, but is not guaranteed to
always be that tight.

Schedule Loop (+; �)
Length Length Optimal Voyager Sharma

17 17 (3,3) (3,3) (3,3)
18 18 (2,2) (2,2) (2,2)
18 16 (3,2) (3,2) (2,2)
19 19 (2,2) (2,2) (2,2)
19 17 (2,2) (2,2) (2,2)
21 21 (2,1) (2,1) (2,1)
21 19 (2,1) (2,1) (2,1)

TABLE II

Number of FUs for the EWF (Using Non-pipelined

Multiplier)

Schedule Loop (+; ~)
Length Length Optimal Voyager Sharma

17 17 (3,2) (3,2) (3,2)
18 18 (3,1) (3,1) (2,1)
18 16 (3,1) (3,1) (2,1)
19 19 (2,1) (2,1) (2,1)
19 17 (2,1) (2,1) (2,1)
21 21 (2,1) (2,1) (2,1)
21 19 (2,1) (2,1) (2,1)

TABLE III

Number of FUs for the EWF (Using Pipelined Multiplier)

VI. Experiments and Results

Experiments were run on the Elliptic Wave Filter [16,
p.206] (EWF) and Discrete Cosine Transform [17] (DCT)
benchmarks. The results are listed in Table II, III, and
IV, respectively. Given the time constraint c listed in the
�rst column, the bounds computed by Voyager's FU lower-
bounding method are reported in the column labeled Voy-

ager, and the minimum number of FUs for which a fea-
sible schedule was found by Voyager's scheduler [12], [2]
are reported in the column labeled Optimal. These results
are compared to the lower bounds produced by applying
the technique of [4], which are reported under the heading
Sharma [4].
For the EWF benchmark, the standard assumptions were

made, i.e., that an adder (denoted as +) takes one control
step, a multiplier (denoted as �) takes two control steps,
and a pipelined multiplier (denoted as ~) has a latency
1. The bounds for non-pipelined multipliers are given in
Table II, and for pipelined multipliers are reported in Ta-
ble III. In all cases, the bounds on the number of FUs
produced by our method (Voyager) were as tight as possible
(i.e., Voyager's scheduler could �nd feasible schedules that
satisfy those bounds). However, the bounds produced by
the algorithm of [4] were occasionally loose, as illustrated
in the shaded rows.
A di�erent kind of experiment was run on the DCT

benchmark. The VDP100 module library [18] was used,
where a register transfer involving an adder (denoted as
+), a subtracter (denoted as �), and a multiplier (denoted
as �) takes 48ns, 56ns, and 163ns respectively. For a time
constraint of 500ns, the bounds were computed for eight
di�erent clock lengths as shown in Table IV. Again, the
bounds produced by Voyager's approach were always as
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Time=500ns (+;�; �)
Clock Csteps EXACT LBND SHARMA

56 8 (7, 4, 11) (7, 4, 11) (5, 4, 11)
(5, 6, 15) (5, 6, 15)55 9
(6, 4, 13) (6, 4, 13)

(5, 4, 13)

48 10 (5, 6, 16) (5, 6, 16) (5, 4, 16)
(7, 4, 11) (7, 4, 11)33 15
(5, 4, 15) (5, 4, 15)

(5, 4, 11)

(7, 4, 11) (7, 4, 11)28 15
(5, 4, 15) (5, 4, 15)

(5, 4, 11)

24 20 (4, 4, 11) (4, 4, 11) (4, 4, 11)
(7, 4, 11) (7, 4, 11)21 23
(5, 4, 15) (5, 4, 15)

(5, 4, 11)

(7, 4, 11) (7, 4, 11)19 26
(5, 4, 15) (5, 4, 15)

(5,4, 11)

TABLE IV

Number of FUs for the DCT (Using a Time Constraint of

500ns)

tight as possible, and the bounds produced by Sharma's
approach were loose in several cases.
For all these experiments, we used the LINDO LP-solver

on a SPARCstation 2. For the EWF example, each set of
bounds in Table II took between 2.2 and 9.7 CPU seconds
to generate, and each set of bounds in Table III was gener-
ated in less than 1.5 CPU seconds. The DCT experiment,
reported in Table IV, comprised much larger problem in-
stances (particularly as the clock length became smaller),
and required between 3.3 and 23.03 CPU seconds to gen-
erate each set of bounds. Although Sharma's algorithm is
theoretically faster , with average run times [4] of 1.68 CPU
seconds for examples such as the EWF, we have shown,
both theoretically and experimentally, that our method
produces bounds with higher accuracy, and does so with
acceptable run times.
In Section V, we proved the bound obtained by rounding

up the solution of the LP relaxation of the FU-Min prob-
lem may be as tight as the bound produced by Voyager's
approach, but is not guaranteed to always be that tight.
However, in all the experiments that we have run so far,
both approaches always found exact bounds.

VII. Summary and Future Work

This paper has presented a formal description of the FU
lower-bounding problem that produces the tightest possible
bounds that can be found by relaxing either the precedence
constraints or the integrality constraints on the scheduling
problem. Although this problem is not directly solvable in
polynomial time, we have presented an extended problem
that can be solved in polynomial time and can be used to
indirectly �nd the same bounds as the original problem.

Appendix

I. Proof of Lemma 1

Proof: It is easy to verify that [x; z(x)] satis�es the
constraints of (Ek), and therefore, represents a feasible so-
lution. We will only show that the cost f(z(x)) of [x; z(x)]
is no greater than the cost f(y) of [x;y].

Consider a particular s 2 S. Let dj = zs;j(x) � ys;j ,
and a = bus(x)c + 1. The values of zs;j(x) can be found
using (7) and it can be seen that dj � 0, for j = 1; : : : a�1,
and dj � 0, for j = a+ 1; : : : ;mk. Furthermore, according
to (5) cj � cj+1, j = 1; : : : ;mk � 1. We can now use these
facts to show that, for each row s 2 S, the di�erence in
cost between [x;y] and [x; z(x)] is no greater than zero:

mkX
j=1

cjdj =
a�1X
j=1

cjdj + cada +

mkX
j=a+1

cjdj

� ca

a�1X
j=1

dj + cada + ca

mkX
j=a+1

dj

= ca

mkX
j=1

dj

= 0:

II. Proof of Lemma 2

Proof: The proof consists of two parts. First we
prove f(z(x)) � fmin(m(x)); then in the next part, we
prove f(z(x)) � fmax(m(x)).
The de�nition of m(x) in (9) implies that there exists a

control step s0 such that m(x) = us0 . Hence, in (7), m(x)
can be substituted for us0 to obtain:

zs0;j(x) = [us0 ]j = [m(x)]j for 1 � j � dm(x)e:

And we can now substitute [m(x)]j for zs0;j(x) in (4) to
complete the the �rst part of the proof:

f(z(x)) �

dm(x)eX
j=1

cjzs0;j(x) =

dm(x)eX
j=1

cj [m(x)]j = fmin(m(x)):

For the second part of the proof, if we de�ne

dj =
X
s2S

zs;j(x)�
jIkj

p
[m(x)]j ;

then the following relations can be written by using (7)
and (6).

dj+1 � dj ; for j = 1; : : : ; bm(x)c; and
(17)X

j

dj = 0: (18)

Suppose a is the largest index for which da > 0. Then,
according to (17), dj > 0 for j � a, and dj � 0 for j > a.
Furthermore, since cj � cj+1, we can write

X
j�a

cjdj � ca
X
j�a

dj since dj > 0, when j � a;

X
j>a

cjdj � ca
X
j>a

dj since dj � 0, when j > a:
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The above two inequalities are added, and then (18) is
substituted: X

j

cjdj � ca
X
j

dj = 0:

We can now complete the second part of the proof as

f(z(x))� fmax(m(x)) =
X
j

cjdj � 0:

III. Proof of Lemma 3

Proof: The proof of (12) is similar to the proof of
Lemma 2, except that, in this case, dj needs to be de�ned
as

dj =
jIkj

p0
[p0]j �

jIkj

p
[p]j :

Substituting (11) into (12), and then by using the rela-
tion p � p0, we can derive (13).
We can use (10) and (11) to compute fmin(p)�fmax(p�

1), and then use the de�nition of cp from (5) to verify (14).

IV. Proof of Lemma 4

Proof: The proof consists of showing that [x; z(x)]
satis�es all constraint of (Ek). Since [x;mk] is feasible
in (APk), we must have Mtx � 1, and Max = 1. Fur-
thermore, from (7) it can be easily veri�ed that [x; z(x)]
satis�es constraint (R0), and z(x) � 1.

V. Proof of Lemma 5

Proof: The feasible regions of (Ek) and (APk) indi-
cate that, for proving the lemma, it is su�cient to show
[x;m(x)] 2 conv(Rk). Since [x;y] 2 PF (R

0
k), it follows

from Lemma 7 that [x;y] 2 conv(R0
k). In the following,

we will show that [x;y] 2 conv(R0
k) implies [x;m(x)] 2

conv(Rk).
Any point [x;y] 2 conv(R0

k) must be a convex combina-
tion of points in R0

k. If we denote those points as [x
i;yi],

i = 1; : : : q, then [x;m(x)] can also be denoted as a con-
vex combination of [xi;m(xi)], i = 1; : : : q. Furthermore,
when [xi;yi] 2 R0

k , it can be veri�ed from (2) and (3) that
[xi;m(xi)] 2 Rk, for all i = 1; : : : q. Since [x;m(x)] is a
convex combination of [xi;m(xi)], i = 1; : : : q, it can be
concluded [x;m(x)] 2 conv(Rk).

Lemma 6: The coe�cient matrix A =

2
4 Ma 0

0 I
Mr �My

3
5

describing the constraints of PF (R
0
k) is totally unimodular

(TU).
Proof: The rows of A can be partitioned in the fol-

lowing manner: 2
64
Ma 0

0 I

Mr �My

3
75 :

Each column of the above matrix contains exactly two
nonzero entries. If the nonzero entries are of the same
sign then the corresponding rows are contained in di�erent
partitions. If the nonzero entries are of opposite signs then
the corresponding rows are contained in the same partition.
This is a su�cient condition for a matrix to be TU (Chapter
III.1, Corollary 2.8 in [15]).
Lemma 7: The feasible region of (Ek) is integral, i.e.,

PF (R
0
k) = conv(R0

k)
Proof: From Lemma 6 we know that the coe�cient

matrix describing the constraints of PF (R
0
k) is totally uni-

modular. Therefore, we can use Proposition 2.2 in Sec-
tion III.1 of [15] to conclude that PF (R

0
k) is an integral

polyhedron, i.e., it is the same as the convex hull of the
integer points inside it. Furthermore, the integer points
inside PF (R

0
k) are represented by R0

k . Thus it follows that
PF (R

0
k) = conv(R0

k).

VI. Proof of Proposition 4

Proof:

fmax(dm(x�)e) � fmax(m(x�)) from (12)

� f(z(x�)) from Lemma 2

� f(z(~x)) from Corollary 2

� fmin(m(~x)) from Lemma 2

� fmin(bm(~x)c) from (13))

> fmax(bm(~x)c � 1) from (14)

It can be easily veri�ed that m(~x) � mk, which justi�es
our use of (13) and (14) in the above derivation. From the
above relation we can write

dm(x�)e > bm(~x)c � 1;

� bm(~x)c:

If we combine the above relation with Corollary 3 and note
that m�

k = m(x�), then we can conclude

dm(~x)e � dm�
ke � bm(~x)c:
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