IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO. 2, JUNE 1996 1

Computing Lower Bounds on Functional Units
Before Scheduling!

Samit Chaudhuri?, Robert A. Walker?

Abstract— This paper presents a new polynomial-time al-
gorithm for computing lower bounds on the number of func-
tional units (FUs) of each type required to schedule a data
flow graph in a specified number of control steps. A formal
approach is presented that is guaranteed to find the tight-
est possible bounds that can be found by relaxing either
the precedence constraints or integrality constraints on the
scheduling problem. This tight, yet fairly efficient, bound-
ing method can be used to estimate FU area, to generate
resource constraints for reducing the search space, or in con-
junction with exact techniques for efficient optimal design
space exploration.

I. INTRODUCTION

One of the central problems in high-level synthesis is the
scheduling problem — the problem of mapping operations
onto control steps in the proper order. The process of solv-
ing the scheduling problem can be viewed as the process
of exploring a 2-dimensional (2D) design space, with axes
representing time (schedule length) and area (ideally total
area, but often simplified to functional unit area). This 2D
design space is shown in Figure 1, where feasible designs
lie in the shaded region, infeasible designs lie in the white
region, and optimal designs lie on the curve between the
two regions.

A variety of methodologies can be used to explore this
design space. If optimal solutions are required, then ex-
act techniques, such as ILP formulations [1], [2], must be
used. However, exploring the entire design space with exact
techniques can be extremely time consuming, so in prac-
tice a more efficient methodology may be required. One
such methodology uses heuristic algorithms to quickly de-
rive two bounds on the optimal solutions: a lower bound
(which may be infeasible) and an upper bound (which must
be feasible).

Although these lower bounds do not necessarily corre-
spond to feasible designs, they can still provide much valu-
able information during the design process. For example,
the lower bounds provide an estimate of the FU area re-
quired for a design. They can also be used to add resource
constraints to a Time-Constrained Scheduling (TCS) prob-
lem, reducing the size of the feasible region of that problem

I This material is based upon work supported by the National Sci-
ence Foundation under Grant No. MIP-9211323.

2This work was performed when S. Chaudhuri was with the De-
partment of Electrical, Computer, and Systems Engineering, Rens-
selaer Polytechnic Institute, Troy, NY 12180. S. Chaudhuri is now
with Cadence Design Systems, Inc., Chelmsford, MA 01824. E-mail:
samit@cadence.com.

3R. A. Walker is with the Department of Computer Science and
the Department of Electrical, Computer, and Systems Engineer-
ing, Rensselaer Polytechnic Institute, Troy, NY 12180. E-mail:
walkerb@cs.rpi.edu.

Area

— Upper Bounds
= Optimal Designs
— — Lower Bounds

Schedule Length

Fig. 1. The Design Space for the Scheduling Problem

so that it can be solved more quickly. Finally, they can be
used together with heuristic scheduling algorithms (which
produce upper bounds) for efficient optimal design space
exploration: if those two simple approaches produce the
same result, then that result is optimal, and the search is
complete; only in those cases when the two differ must a
more time-consuming exact technique be used instead.

A. Formulating the FU Lower-Bounding Problem

This Functional Unit Lower-Bounding (FU-LB) problem
derives from the Functional Unit Minimization (FU-Min)
problem: given a Data Flow Graph (DFG) and a time
constraint ¢ on the schedule length, compute the minimum
number mj of FUs needed for any feasible schedule, for
each FU-type k € K (the set of functional unit types).
Unfortunately, the FU-Min problem is NP-hard, so there
is little hope of finding a polynomial-time solution.

However, an easier problem, called the Functional Unit
Lower-Bounding (FU-LB) problem, can be formulated to
compute a lower bound mj, on m;,. The goal is then to solve
this easier problem, preferably in polynomial time, and to
use the results for more efficient design space exploration.

Unfortunately, there is no single, unique FU-LB problem.
A FU-LB problem is formed by relaxing some constraints
of the original FU-Min problem, and different relaxations
produce different FU-LB problems: some easier to solve,
some harder; some producing tighter bounds, some looser.
A comprehensive design space exploration system should
therefore provide a “suite” of efficient solutions to a variety
of FU-LB problems, and allow the designer to choose the
appropriate algorithm for the task at hand (see Table I).

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO. 2, JUNE 1996

Precedence LP- Tightest
Relaxation Relaxation | Prec. Relaxation
Quality Fairly Usually Guaranteed
of Bounds Tight Tightest Tightest
Complexity O(c®n) Solve 1 LP Solve 2 LPs
of Solution (polynomial) (polynomial)

TABLE I
DIFFERENT APPROACHES TO FU LOWER-BOUNDING

A.1 Forming FU-LB Problems by Precedence Relaxation

One approach to forming a FU-LB problem from the
FU-Min problem is to relax the precedence constraints be-
tween operations. The simplest method for relaxing the
precedence constraints is to eliminate them completely, as
was done by Jain et al. in [3]. Although the resulting
FU-LB problem can be solved quickly, it can produce very
loose bounds, as was later demonstrated by Sharma and
Jain in [4]. A similar relaxation was used by Kiiglikcakar
for estimating FU area in [5].

A tighter scheme for relaxing the precedence constraints
and solving the resulting FU-LB problem is based on a
theorem originally given by Ferndndez and Bussell in [6,
Theorem 1]. Briefly, that technique considers each cstep
interval [s, t] between 1 and ¢, and calculates the minimum
load 1%, in each interval; this minimum load ¥, is com-
puted by moving the operations within their schedule in-
tervals so that they have a minimum possible overlap with
[s,t], and summing all the overlaps. A lower bound mj, on
the number of functional units for each FU-type k € K can
then be computed as

{15/t = s+ 1)1} (1)

maXx
[5,t]C[1,c]

mj, =
In high-level synthesis, Ferndndez & Bussell’s theorem has
been used by Sharma and Jain [4], by Ohm et al. [7], and by
Hu et al. [8], [9] to compute lower bounds on the number of
FUs 1. Rabaey and Potkonjak [11] also produce the same
bounds, although using a different method.

As illustrated in Figure 2, both of the approaches de-
scribed in [3] and [4] first give an algorithm, and then prove
that the algorithm indeed produces a lower bound. There-
fore, each of these algorithms must be solving a particular
FU-LB problem, but we do not know the position of each
problem in the range of possible problems, and thus we do
not know the quality of the bounds that might be expected.

A.2 Forming FU-LB Problems by LP-Relaxation

Another approach, resulting in a different type of FU-
LB problem, is based on the fact that the FU-Min problem
can be formulated as an Integer Linear Program (ILP), as
shown in the next section. In the worst case, solving an
ILP formulation takes exponential running time.

However, an ILP can be relaxed by dropping the inte-
grality restrictions on the variables. This relaxed problem,

LAlthough their problems were not presented as relaxations, we
proved in [10] that the same bounds can be produced by solving the
precedence relaxation.

[[Jaing2]] [[Sharma93]]

Proveit Givesa Lower Bound
loose bounds __5. tight bounds
FU-MP m

easy hard
FU-LBP RN FU-LBP

Fig. 2. Previous Approaches to Solving the FU-LB Problem by Re-
laxing the Precedence Constraints

loose bounds . tightbounds
easy hard
FU-MP
FU-LBP FU-LBP IEEEN FU-LBP
E [Jain92] [Sharma93]

Generic FU-LBP

== Find Tightest FU-LEP ==jp (VRIS

Solve with an Algorithm

Fig. 3. Voyager’s Approach to Solving the FU Lower-Bounding Prob-
lem

called the LP-relaxation of the original ILP, can be solved
in polynomial time, and provides a lower bound on the
solution to the original problem.

This method was used by Gebotys in [1], where the LP-
relaxation of the FU-Min problem was used to compute
lower bounds on the number of functional units (thus solv-
ing a FU-LB problem). In all of her benchmark examples,
this method found the exact bounds (i.e., bounds that ex-
actly match the the optimal solution) by solving only a
single LP-relaxation, as shown in the column labeled LP-
Relaxation in Table I. However, there is no guarantee that
this method will always produce exact bounds.

A.3 Our Approach — Forming an FU-LB Problem as the
Tightest Possible Precedence Relaxation

In Rensselaer’s Voyager design space exploration sys-
tem [12], we take yet another approach, although one also
based on precedence relaxations (see the column labeled
Tightest Prec. Relaxation in Table I). Voyager’s solution ap-
proach can be summarized as follows (see Figure 3). We
begin with a formal description of the FU minimization
problem (FU-Min), and form a generic problem by re-
laxing the precedence constraints. This generic problem
concisely describes all possible FU-LB problems based on
precedence relaxations, including those solved by the pre-
vious methods. We then we select the one FU-LB problem
that produces the tightest bound, and solve that FU-LB
problem in polynomial time (by solving at most two LPs).
Thus Voyager’s approach formalizes an entire class of FU
lower-bounding problems (those based on precedence relax-
ations), and is guaranteed to produce the tightest possible

CHAUDHURI AND WALKER: LOWER BOUNDS ON FUNCTIONAL UNITS 3

bounds of any precedence relaxation.

It is more difficult to compare Voyager’s approach to
the LP-relaxation approach. In our experiments (see Sec-
tion VI), both approaches always found exact bounds.
However, in Section V, we show that the bound obtained
by rounding up the solution of the LP relaxation of the
FU-Min problem may be as tight as the bound produced
by Voyager’s approach, but is not guaranteed to always be
that tight. Thus Voyager’s approach provides a guaranteed
solution quality, at the cost of solving only one additional
LP.

The remainder of this paper is organized as follows. In
Section II, a formal description of the FU lower-bounding
problem is presented in equation (LBPj). Although our
method for solving (LBP}) is straightforward, the proof
of its correctness requires an elaborate theoretical develop-
ment which is presented in the next three sections: Sec-
tion IIT introduces an extended problem (Eg), Section IV
discusses the cost function of (E), and its implications
that lead to the lower-bounding method described in Sec-
tion V. Experimental results are presented in Section VI.

II. FORMAL DESCRIPTION OF THE FU
Lowgr-BouNDING (FU-LB) PROBLEM

This section presents an integer linear programming
(ILP) formulation of the FU lower-bounding problem. The
constraints of the ILP are similar to those of the scheduling
problem, and have been used by several ILP-based sched-
ulers [13], [1], [2].

Given a Data Flow Graph (DFG), let the set of all op-
erations be denoted as {o; | ¢ € I}, where [= {1,...,n} is
the index set of all operations. Let 0; — o; denote a prece-
dence relation, meaning operation ¢ must finish execution
before operation j can start.

Suppose the DFG is to be scheduled onto a set S =
{1,...,c} of control steps. Let asap; (resp. alap;) denote
the as-soon-as-possible (resp. as-late-as-possible) control
step (cstep) into which operation o; can start execution.
The control step interval S; = [asap;, alap;] is then referred
to as the schedule interval of operation o;.

Let the type of a functional unit (FU) indicate its func-
tionality (e.g., multiplication, or addition). Let K be the
set of types that are available and let my be the number of
functional units of type k € K. The types of the operations
are determined by the type function 7 : I — K, where
7(i) = k means operation o; is executed on a functional
unit of type k. By using the function 7, we have implicitly
assumed that each operation can be scheduled on only one
type of FU. Thus each FU-type k must execute all opera-
tions with index set I, = {i |7 € I, 7(i) = k}, and {I;}
for k € K is a partition of I.

The FU Minimization (FU-Min) problem then finds the
minimum value of my for a particular ¥ € K, and can be
formulated as:

my, = minmy,

subject to:
Swe=1 Viel, (A)
SES;
Zmi,sgmk VseS, ke K, (R)
i€l
> (@is +xjs;) <1 VseSinS;, (P)
i>8, $i€S; . .
e mes, Voi = 0j,
CUZ'7SEZ+ Viel, s€S;.

Let M, be the coefficient matrix due to the assignment
constraints (A), M, be the coefficient matrix due to the
resource constraints (R), and M; be the coefficient matrix
due to the precedence constraints (P). Then the FU-Min
problem can be represented more concisely in the following
form:

myp =min{mg | M;x<1; x € Ry }, (MPy,)

where

Ri = {x € Pr(Rs) | x integer }, and (2)
Pr(Ry) = {[x,me] € RIM [Myx =1; Myx <m}. (3)

As mentioned earlier, this problem is similar to the TCS
problem, so it is NP-hard [14]. Therefore in order to find
the lower bound efficiently, we have to consider a relax-
ation [15] of (MPg). A number of different relaxations
of (MPyg) are possible, each of which produces a lower
bound on mj and represents a valid FU-LB problem. Our
goal was to find the tightest possible lower bound that could
be found by relaxing the precedence constraints of (MPy).

The following equation presents a generic prob-
lem GLBP(A) which produces a lower bound on m} for
each nonnegative value of A:

my(A) =min{m; + A(Mx — 1) | x € R,}. GLBPy(A)

where A is a vector of positive real numbers. Note that
problem GLBP(A) does not explicitly contain the prece-
dence constraints. Instead, they have been included in the
objective function with the penalty term A(M;x—1). Since
A > 0, violations of the precedence constraints will make
the penalty term positive, and thus intuitively M;x < 1
will be satisfied if A is suitably large.

It can be easily seen that m;(X) < mj for all A > 0; in
other words, m;,(A) provides a lower bound on mj,. For this
reason, we refer to GLBP () as a generic FU-LB problem.
Solving the problem

mj, = maxmy(N)

ma (LBP;)

then gives the largest lower bound mj possible of the infi-
nite number of lower bounds {m;(X) | A > 0}. Therefore
my, is the tightest lower bound that can be found by relax-
ing the precedence constraints.

In the solution of GLBPg(A), although the elements of
x have to be integral, the elements of A can be fractional.

(asonny [£°] | (Tag)t 3 [£°%]
SAN = XN T S £ 47 = XA | &.LU% > [£%]

—~—

SRELY

() L) 5% 115 XN | (£)f} urm

se pauyep mou st wejqoid
popuoIxo oy, "0 = AN — XY Se SOILIJRUI JUSIDIFOO0I
I107[) JO SWLISY Ul POQLIISOP 9 URD SHUTRIISUOD dAOQR 9T,

1312

1=/
.QE“...AHHMAQW% ¢ H.mhm\m“w|m%&“w
T

Se UOALS oIe SJUIRIJSUOD 9IINOSDI POYIpOUW oY T,
1w 107 onpeA 199Y31) © 9Indwod 09 JTISLINSY
orduuts e asn om ‘uoryejuse[dul [eorjorId 10J 08 ‘so[rLIRA
JO I9qUINU ©3Ie[B O} SPES] PUNOQ [RIALI} ® UONS ‘IOAOMOJ]
Hy = (1)1 {9 > s|1}Szpw = w se payndwod Aqper
-ATI}) 9q URD punoq e yons 1w uo punoq roddn ue 9q jsnw
w Ay1yuenb oY) ‘ssou)001100 10 s dols [013u0d e pardno
-00 ST [)] 9eY) 9j0Up 0} pesn aIe Yw ' " ‘1 =g > s
“F'sfi gorqertea AIeUlq [RUOTIIPPR OUJ, "UOIOUNJ 9AT0[qO
JUSIOPIP © 9SN PUR ‘SIUTRIISUOD 9IINOSOI YY) AJIPOW ‘So[(e
-1IeA [RUOT}IPPR 90NpoIjul om ‘weqold popusjxe oy} uJ
"PUNOJ ¢ UL UOIIN[OS ST}
-TetwiouA(od & Je1) 0S UOISUSWIP IOYSIY & 03 UOT)R[NULIOJ 92

()

POYIaN uornjog Furpunog
-19M0T N S, J08eAoA jo juomrdo[ers(oY) Suimoyg dejN-peoy ‘§ S1q

swi |elwoufjod ul 3|qeA|os e
d7 ue 9A|0S 1snw e
(X)A spuy e

awn [elwoukjod ul 3|qeA|os e
S,d7 OM] 1SOW 1€ JA[0S ISNW e

| *m| puy o3 pesn aq ues (x)4

(x) & andwod

Kl

awi |elwoukjod ul 3|qeAj0S 10U [|13S @
s.dl

poxef@J 40 Joquinu 98Je| B SAJ0S ISNW @
sn4 uo Jw punoq 1591y311 spuy e

1w sindwoo 1w sindwoo

IS,

1dd1 1av
+—
(7} w1l [elwouA|jod ul 9|qeAJOS 10U [|11S @
..n_l.w _ d7| SUO_AjUO A0S ISNW e
o HE punoq umwur_m_u 9yl spulj osje e
[=2]
-
Q
%
o
]
=
O

(x) '@ aIndwod

(X)1d4a1d

Tw andwod

1IN

<

swi |elwoukjod ul 9|qeA|os 10U e
dl Ue SAj0s 3snw e
SN4 4O JSqWINU WNWIUIW Spuly @

awi |elwoukjod ul 9|qeAj0s 10U [|13S @
1L PIXe[a1 B IAJOS IS @
mD“_coAKVEn::onu:wcwmmvcco

puojxe om ‘owur) Teroui[od Ul 9[qRAJOS A[109IP JOU ST ‘UOT)
-00s snotaaad oY) ul pajedtpul sk ‘(¥ Jy) werqoid soulg

WO 201DULIYTY Y] burpuajrs g doayg

-owry rerwoudjod ur
punoy oq wed uoIN[os 9Y) 1eY) 08 ULIOJ JUSISPIP ATIYSIIs ©
07 we[qold Sy} WIojsuel) Ued om ‘dogs 1XoU 9y} UT UMOYS
o(M se ‘Ajojyeuniioq -owr) [erwoui[od UI 9[RAJOS J0U ST
‘mrroy quesead s91 ul (1Y) weqoid oY) UeAd ‘I0AOMOY

‘0A70s 0} wd[qo1d o[3uts ®
AJUO oARY MOU 9M SNYT, [[NY XOAUOD SOIRITPUI AU dIdYM

(av) A (ragausn 3% 1S gy |) =

:MO[eq UMOYs se welqold aAljeUID)R UR SUIA[OS
£q pogndwod oq wed (Y)Y Jo onfea oY) JeI) SPN[OUOD 0}
[c1] ut €11 103dey) ‘Z'9 uonISOdoI] oSN WeD oM ‘DI0JOIOT T,
‘(IgIN) Jo [GT] jon(@ uvibuvibpT oY) S POMOIA OC URD
‘I1 woroeg ut pejuesald se ‘(1 Jg) jo uondrosep oy,
‘sowiry Jo raquinu e (Y)Y JgTH Suiajos noyym ¥ jo
onea ot} spolf yey) (1 Jy) wopqoid oATyeUIoR UR 9)e[nul
-10] oM ‘AYMOIYIP SIY) punore yiom oI, “(Y)YJdTL) 9A[0s
07 wy)Iod[e swrj-ferwouijod Aue Jo mouy j0u Op om ‘Y
AIeI1)IqIe UR 10} ‘I0ADMOTY (SO} JO IOUINU B POAJOS 9q O}
speau (Y)I14dgTH werqoid oY) sny], “Y JO sonfeA JUSISPIP
10§ (Y) "t oyndwos og ATeSS909U ST 91 ‘170 9yndwoo 0} I9pIo
ur Jey) uees 9q ued 1 ‘(1gg) Jo uondinsep oY) Woig

WaQOL 201DULIYY Y3 burwisog T dagg

‘suo1909s Suimor[oj o) ut Jeuuew dojs-Aq-degs e ul
pouredxo st pue ‘§ 0INJ1, UL POYIIONS Os[e ST aInpadoad sy T,
((1ggr1) Sutuojsuer) Aq poe[NULIO] ST Yotym ‘wejqoid quoe
-1opIp e Suiajos Aq | ¥w| eyndwoo oy orqissod st 91 ‘1w
ondwod 01 (1 Jg]) SulA[0s A[109IIP JO PeSISUT ‘T0ASMOY

‘o) Terwoudjod ut o[qe
-A70s jou st (13gT) weqoad oY) ‘Apyeungiojun (YJN) JO
SJUTRIISUOD 9dUSpedald oY) SuIXe[ol Aq punoj oq ued Jel)
punoq Jemof a[qissod 90331 oy seonpoid (1 JgT) wejqoid
wo[qoid oY) SurA[os Mot pamoys pue ‘(¥ JN) werqoid ot
WOIJ PoALIop sT PIYm ‘(1 Jg) wejqoid oy} pouyep uory
-09s snotadid oy, 'F 2InSif Ul poyojeys st yoeoidde uon
-n[os s, w3eL0A JO Juomdo(eAsp o) Surmoys deuwr-peor y

(1) WaTa0¥J AIANTIXF THL DNINYOJg ‘TII

"TOT9098 JXoU o1} Ul PIJUas
-o1d st yorym () werqoid JuarePIp e Fuiajos Aq A[p0eIIpul
| 77| sogmdwiod 91 pue ‘A UOII0SG UL POQLIISAP SI POYU
oyl ~(*dd) 10 (¥)*ddT Sutafos Ayordxo Jnoyym ‘our
rerwousod ut | ¥w| eynduros oy arqissod st 91 ‘Ajojeun)ioq
‘Jouuew s1y} ut (YJg) Suiaos £q 1@
99nduiod 09 pIey] SI 91 ‘Y JO Son[eA JUSISYIP 10J SOUIl) [BIOADS
(x)1dg1o Surajos seambor (4 Jg7) SUIAJOS 90UIS 0IOULIOYY)
-Ing -owr) TetwouA[od Ul S](RAJOS J0U ST ‘ULI0f Juasaxd s91 ut
“(¢)*1dg1o woerqoid d11euas 1) ‘Y Aue 10§ ‘Toromoy] ‘| 1|
JO oNTeA 91} PUY 0} POpadU ST onbIulo9) U0 JUSIIJo Ue
‘Ingesn oq 07 dA0(R pajuesald yorordde uoryexeal oYY I0]
"9[NPaTOS 9(ISEA] AUR UT S90INO0SI JO IoqUUNU oY)
o punoq Iomof 9y} se pasn st | 1| oses yorym ur ‘reuory
-oe1y 9q [1w jo anpea oy Jeyy o[qissod ST 31 9I0JOIYT,

966T ANNL ‘T "ON ‘¥ "TOA ‘SIWHLSAS (ISTA) NOILVEIDALNI @T1VOS @DOUVT AHAA NO SNOLLOVSNVHL AHAI 14

CHAUDHURI AND WALKER: LOWER BOUNDS ON FUNCTIONAL UNITS 5

The cost function f is linear, and will be discussed in detail
in Section IV.

It is easy to see that the extended problem (E;) is a lin-
ear program (LP), and therefore can be solved in polyno-
mial time. Thus although the alternative problem (AP})
is not polynomially solvable, we are able to extend it to
problem (Eg), which can be solved in polynomial time.
However, it remains to be shown how the optimal solu-
tion of (Eg) can be used to compute the desired bound

[mj].
Step 3: Using the Solution of (Ei) to Compute [mj]

Unlike the previous problems in the road-map, the ex-
tended problem (Ej) does not contain the variable m,,, and
also minimizes a new cost function f(y). Nevertheless, the
optimal solution of (Ej) can be used to indirectly compute
the value of [m} |, by solving at most two linear programs.
This efficient solution is due to a careful choice of the cost
function f(y) for (Eg), which is discussed in the next sec-
tion. The method for computing [m}] using the optimal
solution of (Eg) is then presented in Section V.

IV. CosTt FuNCTION OF THE EXTENDED PROBLEM (Ey)

As mentioned earlier, our objective is to find a
polynomial-time algorithm for the original FU lower-
bounding problem (LBP}). Unfortunately, neither (LBP})
nor its equivalent, the alternative problem (APy), are di-
rectly solvable in polynomial time. Therefore, we have
taken an indirect approach and have extended (APy) to
formulate an extended problem (Ej), which is solvable in
polynomial time and can be used to compute the desired
bound [m}].

However, (E;) does not contain the variable my, more-
over it minimizes a new cost function f(y). Therefore
f(y) must be defined in such a way that minimizing f(y)
has a similar effect as minimizing my, in the original prob-
lem (APj). In this section, we first define the cost func-
tion f(y), and then discuss two important implications of
choosing such a cost function for the problem (E;). Those
implications are then used in the Section V to prove that
the optimal solution of (Ej) can be used to compute [mj].

First, we define the cost function f(y) as

fly) = ch Zys,ya (4)

= seSs

0, j=1,.
|Ik|

mk,

1 ZC“]—mk+1 (5)

The quantity m,, in the above equation serves as a prelim-
inary lower bound, and can be computed as fu"l‘]

The first important implication of f(y) is that when f(y)
is used as the cost function, it is sufficient to study only
those optimal solutions of (Ej) that satisfy a special form.

This special form is given in Lemma 1, and is crucial for

proving that an optimal solution of (Ej) leads to the de-
sired bound [m}]. For a concise description of the special
form, we use the notation [p] to denote, for any real number
p > 1, the vector

i=1,...
i = [p],

. = 1’ 7|_pJa
pli = {p+ o 0

where p > 1.

The second term in the above equation, i.e., the value of
[p]; at i = [p], evaluates to 1 when p is an integer, and to
the fractional part of p when p is a fraction.

The special form of a feasible solution of (Ey) is denoted
as [x,z(x)], and is described in the following Lemma.

Lemma 1: If [x,y] is a feasible solution of (Ej), then
[x,z(x)] is also feasible in (E;), and f(z(x)) < f(y), where
z(x) is defined as

j: 1)"'7|—US(X)-|)

0, otherwise,

(7)

= Z Ti,s- (8)

i€l

Proof: Given in [16] and [10].

Corollary 1: If [X,y] is an optimal solution of (E;), then

[X,z(%X)] is also an optimal solution of (Ej).
Informally, Lemma 1 and Corollary 1 suggest that, when
we are interested in the optimum solutions of (Ey), it is
sufficient to consider only the feasible solutions of the form
[x, z(x)].

Next we present the second important implication of the
cost function f(y): the costs of the feasible solutions (of
the special form) are not arbitrary, instead they follow a
nicely ordered pattern according to their FU-usage. The
FU-usage is defined to be the maximum number of k-type
operations performed in any control step, and is expressed
as m(x) in the equation

m(x) = max{us(x) | s € S}, 9)

where u4(x) is the number of k-type operations performed
in control step s, and is defined in (8).

Although the details will be omitted here in the interest
of space, we show in [16] and [10] that when the FU-usages
are integers, a higher FU-usage results in a strictly higher
cost, and intuitively, minimizing the cost function should
have a similar effect as minimizing the FU-usage.

In this section, we have presented the cost function f(y),
and have informally explained why minimizing f(y) also
produces the effect of minimizing FU-usage m(x). There-
fore we can expect to minimize my, by solving (Ey), and the
next section will prove that it is indeed possible to compute
[m}] by solving (Ej) at most two times.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO. 2, JUNE 1996

V. COMPUTING THE LOWER BOUND [m}] USING THE
EXTENDED PROBLEM (Ey)

In this section, we discuss how to compute the intended
lower bound [m}] by solving the extended problem (Ey).

The bound [m}] is defined as the ceiling on the opti-
mal solution of problem (LBP}) or its equivalent alterna-
tive problem (AP). It is possible to compute this bound
indirectly by solving problem (Ej) only if there exists a
correspondence between the feasible solutions of (Ex) and
those of (APy). This correspondence is established in the
following lemmas (proofs are given in [16] and [10]).

Lemma 2: If [x,my] is a feasible solution of (APy), then
[x,z(x)] is a feasible solution of (Eg).

Corollary 2: If [x,my] is a feasible solution of (APy),
then f(z(x)) > f(z(X)), where [X,y] denotes an optimal
solution of (Ej).

Lemma 3: If [x,y] is a feasible solution of (Eg), then
[x,m(x)] is a feasible solution of (APy).

Corollary 3: If [x,y] is a feasible solution of (Ej), then
m(x) > m(x*), where [x*, m}] denotes an optimal solution
Informally, Lemma 2 and 3 suggest: from a feasible solu-
tion of (APy), it is always possible to construct a feasible
solution of (Eg), and vice versa.

Although we have established a correspondence between
the feasible solutions of (APy) and (Eg), it remains to de-
termine the relation between the optimal solutions of those
problems. This relation is described in the following propo-
sition.

Proposition 4: Let [X,¥] be an optimal solution of (Eg),
and [x*,mj] be an optimal solution of (AP). Then

[m(x)] > [my] > [m(x)]. (10)

Proof: Given in [16] and [10]. It should be mentioned that
Corollary 2 and 3, as well as the implications of the cost
function presented in Section IV, were used to prove the
above result.

It would be useful to make one further observation before
we present our method for computing [m}]. It is easy to
see that for an optimal solution [x*,m}] of (APy), at least
m(x*) FUs are needed to satisfy the resource constraints
(R). Therefore we can write

m(x*) = mj. (11)

We are now in a position to explain how to compute
[m;] using the solution of the extended problem (Ej). The
method is described in Figure 5; a detailed explanation of
each step, as well as the proof of the method’s correctness,
are presented in the following.

1. Solve (Ex) with an LP-solver in order to compute
[X,¥]- It then immediately follows from Proposition 4
that [mj] is either [m(X)] or [m(X)].

2a. If m(x) is integer, since [m(X)] = |m(x)]| = m(X), we

can be certain that m(x) = [m}], and is the desired
bound.

1) Compute [k, ¥] by solving (Eg);

2a) if m(%X) integer then
m}] = m(%);
else
2b) set ys,j =0, for j = [m(X)] +1,...,my, Vs €S

and solve (Eg) again;
if (E) yields a solution then
[mp] = [m(x)];
else
[my] = [m(x)];
end;

Fig. 5. Method for Computing [m;;]

2b. If m(x) is fractional, set ys; = 0, for j = |m(x)]| +
1,...,mk, Vs € S and solve (Ej) one more time. It
can be easily verified from (7) and (9), that in this
case (Ej) will yield a solution only if it has a feasible
solution [x,y] such that [m(x)] < [m(X)].

Suppose (Ei) yields a solution [x',y']. The argument
presented in the previous paragraph implies [m(x')] <
[m(X)]. Furthermore by Lemma (3), [m(x')] > [m}].
Combining these two inequalities: [mj] < [m(x)],
which in conjunction with (10) leads to the conclusion
[mi] = [m(x)].

On the contrary, if (Ex) does not yield a solution, then
we conclude [mj] = [m(X)]. The proof can be given
by contradiction. Let us assume [m}| = |m(X)]; sub-
stituting (11), we obtain [m(x*)] = |m(X)]. At this
point we can invoke Lemma 2 and conclude that (Ej)
has a feasible solution [x*, z(x*)] such that [m(x*)] =
|m(x)]|. Then, however, (Ex) must yield a solution in
the second run, which contradicts our initial assump-
tion.

Thus, in both cases where m(X) is fractional, the value

of [m}] is determined after solving (E;) a second time.
The method above demonstrates that the lower bound
[m}] on the number of FUs of type k can be computed
in polynomial time by solving the linear program (Ej) at
most 2 times.

Let us now consider the theoretical quality of the lower
bounds [m} | as compared to previous approaches based on
precedence relaxation. As discussed in Section II, the FU
lower-bounding problem (LBP) was formulated in such a
way that it produces the tightest lower bound mj, of all
possible lower bounds {m,(A) | A > 0} that can be found
by relaxing the precedence constraints. The lower bounds
by Sharma and Jain [4] are also computed by relaxing the
precedence constraints, and we have shown in [10] that
the algorithm in [4] computes m(0) by solving the prob-
lem GLBPg(A) for A = 0. Since [mj]| > m,(0), our ap-
proach will produce bounds that are at least as tight, if
not tighter, than the bounds in [4]. We have also shown
in [10] that the bounds produced by Rabaey and Potkon-
jak’s approach [11] are the same as those of Sharma and
Jain [4], so again, our approach will produce bounds that

CHAUDHURI AND WALKER: LOWER BOUNDS ON FUNCTIONAL UNITS 7

Schedule | Loop (+, *)

Length | Length || Optimal | Voyager [Sharma
17 17 (3.3) (3.3) (3.3)
18 18 (2,2) (2.2) (2,2)
18 16 (3,2) (3,2) (2,2)
19 19 (2,2) (2.2) (2.2)
19 17 (2,2) (2,2) (2,2)
21 21 2.10) 2.0) 2.0)
21 19 (2,1) (2,1) (2,1)

TABLE II
NuMBER OF FUs FOrR THE EWF (UsING NON-PIPELINED
MULTIPLIER)

Schedule | Loop (+, ®)

Length | Length || Optimal | Voyager [Sharma
17 17 (3.2) (3.2) (3.2)
18 18 (3.1) (3.1) 2.1)
18 16 (3.1) (3,1) (2,1)
19 19 (2.1) 2.0) 2.0)
19 17 (2,1) (2,1) (2,1)
21 21 2.10) 2.0) 2.0)
21 19 (2,1) (2,1) (2,1)

TABLE III

NuMBER OF FUs For THE EWF (UsING PIPELINED MULTIPLIER)

are at least as tight, if not tighter, than the bounds in [11].
Next we consider the solution of the linear programming
relaxation of (MPy), which also provides a lower bound
(mE¥) on mj. The LP relaxation of (MP},) is described as
mEP =min{m;, | Mix < 1;x € Pp(Ry)}. (LPy)
The feasible region, { M;x < 1; x € Prp(Ry) }, of (LPg)
looks very similar to the feasible region, { M;x < 1; x €
conv(Ry) }, of the alternative problem (APj). However,
since conv(R) C Prp(Ry) (from (2) and (3)), the feasible
region of (APy) is a subset of the feasible region (LPy).
Therefore, the bound produced by (APj;) must be as
tight or tighter than the bound produced by (LPg), i.e.,
mEP < mj. This implies [mZF] < [m}], which means
that the bound obtained by rounding up the solution of
the LP relaxation of (MPy) may be as tight as the bound
produced by Voyager’s approach, but is not guaranteed to
always be that tight.

VI. EXPERIMENTS AND RESULTS

Experiments were run on the Elliptic Wave Filter [17,
p.206] (EWF) and Discrete Cosine Transform [18] (DCT)
benchmarks. The results are listed in Table II, III, and
1V, respectively. Given the time constraint ¢ listed in the
first column, the bounds computed by Voyager’s FU lower-
bounding method are reported in the column labeled Voy-
ager, and the minimum number of FUs for which a fea-
sible schedule was found by Voyager’s scheduler [12], [2]
are reported in the column labeled Optimal. These results
are compared to the lower bounds produced by applying
the technique of [4], which are reported under the heading
Sharma [4].

Time=500ns (+:—%)
Clock | Csteps || EXACT | LBND [SHARMA
56 8 (7,4,11) [(7.4, 11) | (5,4, 11)
(5, 6, 15) | (5, 6, 15) 4
%1% |ea3|as| &4
48 10 (5,6, 16) | (5,6, 16) | (5, 4, 16)
7,4,11) | (7, 4, 11)
1 (4
BB (545 (5a s | &4
7,4,11) | (7, 4, 11)
2 1 (4,11
8 5 |54 15) | (54 15 | &4 1)
24 20 (4,4, 11) [(4.4, 11) | (4,4, 11)
7,4,11) | (7, 4, 11)
21 2 (4,11
3 | (5 4 15) | (5 4 15| &4 1Y)
7,4,11) | (7, 4, 11)
1 2 (4,11
o 6 |l (5 4 15) | (5 4 15 | &4 1)
TABLE IV
NUMBER OF FUs FOR THE DCT (USING A TIME CONSTRAINT OF
500Ns)

For the EWF benchmark, the standard assumptions were
made, i.e., that an adder (denoted as +) takes one control
step, a multiplier (denoted as %) takes two control steps,
and a pipelined multiplier (denoted as ®) has a latency
1. The bounds for non-pipelined multipliers are given in
Table II, and for pipelined multipliers are reported in Ta-
ble ITI. In all cases, the bounds on the number of FUs
produced by our method (Voyager) were as tight as possible
(i-e., Voyager’s scheduler could find feasible schedules that
satisfy those bounds). However, the bounds produced by
the algorithm of [4] were occasionally loose, as illustrated
in the shaded rows.

A different kind of experiment was run on the DCT
benchmark. The VDP100 module library [19] was used,
where a register transfer involving an adder (denoted as
+), a subtracter (denoted as —), and a multiplier (denoted
as *) takes 48ns, 56ns, and 163ns respectively. For a time
constraint of 500ns, the bounds were computed for eight
different clock lengths as shown in Table IV. Again, the
bounds produced by Voyager’s approach were always as
tight as possible, and the bounds produced by Sharma’s
approach were loose in several cases.

For all these experiments, we used the LINDO LP-solver
on a SPARCstation 2. For the EWF example, each set of
bounds in Table IT took between 2.2 and 9.7 CPU seconds
to generate, and each set of bounds in Table III was gener-
ated in less than 1.5 CPU seconds. The DCT experiment,
reported in Table IV, comprised much larger problem in-
stances (particularly as the clock length became smaller),
and required between 3.3 and 23.03 CPU seconds to gen-
erate each set of bounds. Although Sharma’s algorithm is
theoretically faster , with average run times [4] of 1.68 CPU
seconds for examples such as the EWF, we have shown,
both theoretically and experimentally, that our method
produces bounds with higher accuracy, and does so with
acceptable run times.

In Section V, we proved the bound obtained by rounding
up the solution of the LP relaxation of the FU-Min prob-
lem may be as tight as the bound produced by Voyager’s
approach, but is not guaranteed to always be that tight.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO. 2, JUNE 1996

However, in all the experiments that we have run so far,
both approaches always found exact bounds.

VII. SUMMARY AND FUTURE WORK

This paper has presented a formal description of the FU
lower-bounding problem that produces the tightest possible
bounds that can be found by relaxing either the precedence
constraints or the integrality constraints on the scheduling
problem. Although this problem is not directly solvable in
polynomial time, we have presented an extended problem
that can be solved in polynomial time and can be used to
indirectly find the same bounds as the original problem.

REFERENCES

[1] C. H. Gebotys and M. I. Elmasry, Optimal VLSI Architec-
tural Synthesis. Kluwer international series in engineering and
computer science; VLSI, computer architecture, and digital sig-
nal processing, 101 Philip Drive, Assinippi Park, Norwell, MA
02061: Kluwer Academic Publishers Group, 1992.

[2] S. Chaudhuri, R. A. Walker, and J. E. Mitchell, “Analyzing and
Exploiting the Structure of the Constraints in the ILP Approach
to the Scheduling Problem,” IEEFE Transactions on VLSI Sys-
tems, vol. 2, pp. 456-471, Dec. 1994.

[3] R. Jain, A. C. Parker, and N. Park, “Predicting System-Level
Area and Delay for Pipelined and Nonpipelined Designs,” IEEE
Transactions on Computer-Aided Design, vol. 11, pp. 955-965,
Aug. 1992.

[4] A. Sharma and R. Jain, “Estimating Architectural Resources
and Performance for High-Level Synthesis Applications,” IEEE
Transactions on VLSI Systems, vol. 1, pp. 175-190, June 1993.

[6] K. Kiiglikgakar, System-Level Synthesis Techiques with Empha-
sis on Partitioning and Design Timing. PhD thesis, Electrical
Engineering — Systems Department, University of Southern Cal-
ifornia, 1991.

[6] E. B. Ferndndez and B. Bussell, “Bounds on the number of Pro-
cessors and Time for Multiprocessor Optimal Schedule,” IEEF
Transactions on Computers, vol. C-22, pp. 745-751, Aug. 1973.

[7] S.Y.Ohm, F. J. Kurdahi, and N. Dutt, “Comprehensive Lower
Bound Estimation from Behavioral Descriptions,” in Proc. of
the IEEE/ACM International Conference on Computer-Aided
Design, (San Jose, California), pp. 182-187, IEEE Computer
Society Press, Nov. 6-10 1994.

[8] Y. Hu, A. Ghouse, and B. S. Carlson, “Lower Bounds on the
Iteration Time and the number of Resources for Functional
Pipelined Data Flow Graphs,” in Proc. of the IEEE Inter-
national Conference on Computer Design, (Cambridge, Mas-
sachusetts), pp. 21-24, IEEE Computer Society Press, Oct. 3-6
1993.

[9] Y. Hu and B. S. Carlson, “Improved Lower Bounds for the
Scheduling Optimization Problem,” in Proc. of 1994 IEEE In-
ternational Symp. on Circuits and Systems., (London, Eng-
land), pp. 295298, IEEE Computer Society Press, May 30-
June 2 1994.

[10] S. Chaudhuri, Scheduling and Design Space Exploration in High-
Level Synthesis. PhD thesis, Electrical, Computer, and Systems
Engineering — Rensselaer Polytechnic Institute, 1995.

[11] J. M. Rabaey and M. Potkonjak, “Estimating Implementation
Bounds for Real Time DSP Application Specific Circuits,” IEEFE
Transactions on Computer-Aided Design, vol. 13, pp. 669-683,
June 1994.

[12] S. Chaudhuri, S. A. Blythe, and R. A. Walker, “An Exact
Methodology for Scheduling in a 3D Design Space,” in Proc.
of the 8th International Symposium on System-Level Synthesis,
(Cannes, France), p. to appear, IEEE Computer Society Press,
Sept. 13-15 1995.

[13] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A Formal Approach to
the Scheduling Problem in High-Level Synthesis,” IEEE Trans-
actions on Computer-Aided Design, vol. 10, pp. 464-475, Apr.
1991.

[14] J. D. Ullman, “NP-Complete Scheduling Problems,” J. Comput.
System Sci, vol. 10, no. 10, pp. 384-393, 1975.

[15] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial
Optimization. Wiley-Interscience series in discrete mathematics,

605 Third Avenue, New York, NY 10158-0012, USA: Wiley-In-
terscience, 1988.

[16] S. Chaudhuri and R. A. Walker, “Computing Lower Bounds on
Functional Units before Scheduling,” Tech. Rep. 95-13, CS Dept,
Rensselaer Polytechnic Institute, September 1995.

[17] D. E. Thomas, E. D. Lagnese, R. A. Walker, J. A. Nestor, J. V.
Rajan, and R. L. Blackburn, Algorithmic and Register Transfer
Level Synthesis: The System Architect’s Workbench. 101 Philip
Drive, Assinippi Park, Norwell, MA 02061: Kluwer Academic
Publishers Group, 1990.

[18] J. A. Nestor and G. Krishnamoorthy, “SALSA: A New Approach
to Scheduling with Timing Constraints,” IEEE Transactions on
Computer-Aided Design, vol. 12, pp. 1107-1122, Aug. 1993.

[19] VLSI Technologies Inc., VDP100 1.5 Micron CMOS Datapath
Cell Library, 1988.

