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Abstract| This paper describes an exact solution method-
ology, implemented in Rensselaer's Voyager design space ex-
ploration system, for solving the scheduling problem in a 3-
dimensional (3D) design space: the usual 2D design space
(which trades o� area and schedule length), plus a third dimen-
sion representing clock length. Unlike design space exploration
methodologies which rely on bounds or estimates, this method-
ology is guaranteed to �nd the globally optimal solution to a 3D
scheduling problem. Furthermore, this methodology e�ciently
prunes the search space, eliminating provably inferior design
points through: (1) a careful selection of candidate clock lengths,
and (2) tight bounds on the number of functional units or on
the schedule length. Both chaining and multi-cycle operations
are supported.

I. Introduction

High-level synthesis is the design task of converting a
behavioral description of a digital system into a register-
transfer level design that implements that behavior. One of
the central problems in high-level synthesis is the schedul-
ing problem { the problem of mapping operations onto
control steps (csteps) in the proper order. The scheduling
problem is usually formulated in one of three ways, depend-
ing on the goal: (1) Time-Constrained Scheduling (TCS),
which minimizes the number of resources when the number
of control steps is �xed, (2) Resource-Constrained Schedul-
ing (RCS), which minimizes the number of control steps
when the number of functional units is �xed, or (3) Time-
and Resource-Constrained Scheduling (TRCS), which de-
termines whether or not a feasible schedule exists when
both the number of functional units and the number of
control steps are �xed.

The process of solving the scheduling problem can be
viewed as the process of exploring a 2-dimensional (2D)
design space, with axes representing time (schedule length)
and area (ideally total area, but often simpli�ed to func-
tional unit area). This 2D design space is shown in Fig-
ure 1, where feasible designs lie in the shaded region, and
infeasible designs lie in the white region. Optimal designs
lie on the curve between the two regions, and represent the
tradeo� between time and area.
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Fig. 2. The Larger 3-Dimensional (3D) Design Space

A. The 3D Design Space

In reality, however, this 2D design space is only a small
part of a much larger design space. One such larger design
space is presented by De Micheli in [1], and is illustrated in
Figure 2. Here the design space for high-level synthesis is
viewed as a 3-dimensional (3D) space, with axes not only
representing schedule length and area, but clock (cycle)
length as well.
A typical scheduling algorithm explores only one 2D slice

of this larger 3D design space { the 2D slice corresponding
to a �xed clock length chosen a priori by the designer. This
clock length depends on many factors, including the delays
of the functional units, storage elements, glue logic, and
wiring, as well as controller delays. Some of those values
are unknown before scheduling, and can therefore only be
estimated at this stage in the design process.
Unfortunately, the designer must specify a clock length

(or at least, the data path component of the clock length)
before scheduling. Lacking detailed information, the de-
signer is forced to make an ad hoc and frequently arbi-
trary guess at the clock length1. Unfortunately, this ad hoc

1The designer may be relying on retiming [2], clock skew optimiza-
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3 Mult, 3 Add 2 Mult, 2 Add 1 Mult, 2 Add

Clock Csteps ns Csteps ns Csteps ns

163 14 2282 16 2608 16 2608

82 17 1394 18 1476 21 1722

55 21 1155 22 1210 29 1595

48 25 1200 26 1248 37 1776

24 46 1104 48 1152 66 1584
TABLE I

Resource-Constrained Scheduling Results for the EWF

choice eliminates an entire dimension of the search space,
so even an optimal scheduler will explore only the corre-
sponding 2D slice of the design space, and will produce a
schedule that is optimal only for that one clock length. A
better schedule may exist for a di�erent clock length, but
will not be found.

To motivate the need to explore this 3D design space,
consider the problem of scheduling the well-known Elliptic
Wave Filter [6, p.206] (EWF) benchmark, under a variety
of resource constraints, to �nd the fastest possible schedule.
Assume that the VDP100 module library [7], [8] is used,
which has a multiplication delay of 163ns, and an addition
delay of 48ns.

Forced to select a clock length for the scheduling algo-
rithm, the designer would probably choose either a clock
length of 48ns or 163ns { the execution delay of either ad-
dition or multiplication. Given those clock lengths, an op-
timal scheduler that supports multi-cycle operations (such
as the ILP-based scheduler [9] in our Voyager design space
exploration system) would produce the results shown on
the rows labeled \48" and \163" in Table I.

Now consider the other rows of Table I, which represent
other, perhaps less obvious, choices for the clock length.
For each resource constraint, the fastest design corresponds
to a clock length of 24ns { a design that would not be found
by a scheduling methodology limited by ad hoc guesses. 2

Thus it is important to explore a number of candidate clock
lengths to �nd the globally optimal solution.

B. Exploring the 3D Design Space

A variety of methodologies can be used for design space
exploration. The methodologies may use exact algorithms
to �nd optimal solutions, may use heuristic algorithms to
�nd lower and upper bounds on the optimal solution, or
may use heuristic algorithms to estimate the optimal solu-
tion. In general, the tradeo� between these three types of
methodologies is one of solution quality versus computation

tion [3], or reclocking [4] to determine the �nal clock length. How-
ever, these techniques generally do not change the relative scheduling
of the operations, and do not perform tradeo�s involving resource
sharing, so they do not explore the high-level design space as fully as
scheduling techniques. Nevertheless, the later use of these techniques,
possibly in conjunction with other transformations [5], can serve as a
valuable complement to our methodologies.
2This small clock length also results in a larger number of control

steps, and thus a larger and more complex control unit. However, note
that a clock length of 55ns { more comparable to the ad hoc guesses {
results in a schedule almost as fast as the one corresponding to a 24ns
clock, and faster than those corresponding to the ad hoc guesses.

Exhaustive Search:

read in DFG, module library, and any constraints

for each clock length

optimally schedule the DFG

present the best result(s) to the user for evaluation

Fig. 3. Exhaustive Search of the 3D Design Space (Impractical)

time. This paper is concerned with �nding optimal (exact)
solutions to the scheduling problem in the 3D design space.
One exact methodology for optimally solving this 3D-

scheduling problem shown in Figure 3. This methodology
exhaustively explores all potential clock lengths and all fea-
sible schedules, and guarantees a globally optimal solution.
Unfortunately, the computation time for this methodology
is too high to be practical for all but the simplest examples.
In contrast, this paper presents a more e�cient exact

methodology, implemented in the Voyager design space ex-
ploration system, for optimally solving this 3D-scheduling
problem. This methodology makes the problem tractable
through: (1) careful pruning of provably inferior points
from the design space, and (2) provably e�cient exact al-
gorithms for solving the individual problems.
However, even this solution methodology is only the �rst

step toward the larger design space exploration problem
that eventually needs to be solved. As described here,
our methodology does not consider the module selection
or type mapping problems, and does not support loops or
conditionals3. It also does not incorporate register, wiring,
or controller area, and only partially incorporates the de-
lays associated with the controller and wiring. Neverthe-
less, the work described here can serve as a foundation
for an exact solution methodology that incorporates each
of these factors, either by adding extra dimensions to the
search space or by adding other stages to the methodology.

II. Methodology Overview

This paper presents two methodologies to solve the clock
determination and scheduling problem, that are guaranteed
to �nd the globally optimal design, and that are far more
e�cient than an exhaustive search of the design space. One
methodology solves the Time-Constrained 3D Scheduling
(TCS-3D) problem (Figure 4), while the other solves the
Resource-Constrained 3D Scheduling (RCS-3D) problem
(Figure 5). Both methodologies are implemented in Rens-
selaer's Voyager design space exploration system.
The core of each methodology is based roughly on the ex-

haustive search of Figure 3. Each methodology computes
a set of candidate clock lengths, and then, for each can-
didate clock length, optimally solves the scheduling prob-
lem. However, a straightforward implementation of this
core methodology takes much too long to solve, even for
small benchmarks. Thus it is important to (1) solve the
scheduling problem for only a small, provably minimal set
of candidate clock lengths, and (2) solve the scheduling

3However, module selection has since been incorporated [10], and
conditionals and register area are currently being investigated.
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Time-Constrained 3D Scheduling (TCS-3D):

read in DFG, module library, and time constraint

compute minimal set of candidate clock lengths

for each clock length

perform Time-Constrained Scheduling (TCS)

end

present the results to the user for evaluation

Time-Constrained Scheduling (TCS):

compute tight lower bounds on the number of functional

units of each type

use these lower bounds as resource constraints, and solve

TRCS as a decision problem

while no feasible schedule is found

increase the resource constraints

solve TRCS as a decision problem

end

Fig. 4. Voyager's Time-Constrained 3D Scheduling (TCS-3D)
Methodology

problems as e�ciently as possible so that an optimal solu-
tion is found in a reasonable amount of time.
To solve the scheduling problem, both methodologies use

an Integer Linear Programming (ILP) formulation (Sec-
tion IV) that was developed after a careful formal analysis
of that problem. This analysis was presented earlier in
[9], where we proved that this formulation, in particular
the formulation of the TRCS problem, was well-structured
and can be solved e�ciently.
Since the search spaces for the TCS and RCS problems

are each larger than that of the TRCS problem, these
methodologies solve the TCS and RCS problems by gen-
erating the missing constraints, in e�ect converting each
into an easier-to-solve TRCS problem. For the TCS prob-
lem, the methodology computes constraints on the number
of functional units of each type; for the RCS problem, it
computes a time constraint on the length of the schedule.
Since these constraints can also be found e�ciently, the
entire methodology is e�cient.

A. Time-Constrained 3D Scheduling (TCS-3D)

Voyager's methodology for solving the time-constrained
3D scheduling problem is outlined in Figure 4. This
methodology begins by reading in the data 
ow graph
(DFG), the execution delays for the relevant functional
units in the module library, and the overall time constraint.
The minimal set of candidate clock lengths is then de-

termined (see Section III), based on the execution delays
of the relevant functional units in the module library, and
for chained designs, on the structure of the DFG. For the
EWF and the module library described earlier, 10 candi-
date clock lengths would be generated (in the absence of
chaining). For each of these clock lengths, time-constrained
scheduling is then performed, and the results are presented
to the user for evaluation.
To solve the TCS problem e�ciently, Voyager's ILP for-

mulation of the TRCS problem (described in Section IV) is
used as follows. First, tight lower bounds on the number of

Resource-Constrained 3D Scheduling (RCS-3D):

read in DFG, module library, and resource constraints

compute minimal set of candidate clock lengths

for each clock length

perform Resource-Constrained Scheduling (RCS)

end

present the results to the user for evaluation

Resource-Constrained Scheduling (RCS):

compute a tight lower bound on the schedule length

use this lower bound as a time constraint, and solve TRCS

as a decision problem

while no feasible schedule is found

increase the time constraint

solve TRCS as a decision problem

end

Fig. 5. Voyager's Resource-Constrained 3D Scheduling (RCS-3D)
Methodology

functional units of each type are computed (using a method
sketched out in Section V). These bounds are then used
as resource constraints, and the TRCS problem is solved
as a decision problem. If TRCS produces a feasible sched-
ule, then that schedule is guaranteed to be optimal; if not,
the resource constraints are increased, and this process is
repeated.
This TCS-3D solution methodology is relatively e�cient

for the following reasons. First, the functional unit lower
bounds can be computed in polynomial time, by solving
at most two Linear Programs (LPs). Second, TRCS is
solved as a decision problem, rather than an optimiza-
tion problem, using a formulation that is well-structured,
and requires few, if any, branches in a branch-and-bound
search [9]. Finally, the functional unit lower bounds are
highly accurate [11] (in almost every case they lead im-
mediately to a feasible solution), so in practice the lower
bounds seldom have to be increased to solve TRCS again.
Thus the TCS-3D problem can be solved quickly, even for
medium-sized benchmarks (see Section VII).
The e�ciency of the methodology can be further in-

creased if the goal is to �nd the schedule with the fewest
number of functional units. In this case, before each TCS
problem is solved as a TRCS problem, the FU lower bounds
are compared to the number of FUs required in the best
previous schedule. If the new bounds are smaller, then the
TRCS problem is solved as explained above; if the new
bounds are larger, then there is no need to solve the TRCS
problem since it would require more functional units than
the best solution found so far.

B. Resource-Constrained 3D Scheduling (RCS-3D)

Voyager's methodology for solving the resource-
constrained 3D scheduling problem is similar (see Fig-
ure 5). This methodology reads in a resource constraint,
and generates a minimal set of candidate clocks using
the clock length determination algorithm described in
Section III. For each of these clock lengths, resource-
constrained scheduling is then performed.
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To solve the RCS problem e�ciently, Voyager's ILP for-
mulation of the TRCS problem (Section IV) is used as
follows. First, a tight lower bound on the overall length
of the schedule is computed (Section VI). This bound is
then used as a time constraint, and the TRCS problem is
solved as a decision problem. If TRCS produces a feasible
schedule, then that schedule is guaranteed to be optimal;
if not, the time constraint is increased, and this process is
repeated. The RCS problem can be solved quickly, even
for medium-sized benchmarks (see Section VII).
The e�ciency of the methodology can be further in-

creased if the goal is to �nd the shortest schedule. In
this case, before each RCS problem is solved as a TRCS
problem, the schedule length lower bound is compared to
the length of best previous schedule. If the new bound
is smaller, then the TRCS problem is solved as explained
above; if the new bound is larger, then there is no need to
solve the TRCS problem since it would result in a longer
schedule than the best solution found so far.

C. Advantages of this Solution Methodology

In summary, Voyager's exact solution methodology has a
two-fold advantage over previous methodologies: (1) guar-
anteed optimal results, and (2) solution techniques based
on e�cient pruning of the search space.
Unlike other design space exploration methodologies

which rely on bounds or estimates to make the problem
tractable, this methodology generates the minimal set of
candidate clock lengths that could possibly correspond to
the optimal design, and then optimally solves either the
TCS or RCS problem for each of those clock lengths. Thus
it is guaranteed to �nd the globally optimal result.
Furthermore, although this methodology may appear at

�rst glance to perform exhaustive scheduling, in reality
it is quite e�cient for three reasons. First, a minimal
set of candidate clock lengths is generated, and schedul-
ing is performed for only those few values. Second, in-
stead of directly solving the TCS or RCS problem, the
missing constraints are generated, converting that problem
into a TRCS problem with a smaller search space; more-
over, those constraints are tight, and are also generated
e�ciently. Finally, a TRCS formulation is used that is
well-structured [9], and therefore usually �nds an optimal
solution with few branches.

III. Determining Candidate Clock Lengths

One of the most important parameters needed by any
scheduling algorithm is the length of the system clock 4.
Determining this clock length requires a detailed analy-

sis of the clock skew, wire delays, glue logic delays, setup
and propagation delays of the storage elements, etc. [13].
However, all such quantities are largely unknown during
high-level synthesis. Fortunately, although such a detailed
analysis is necessary later in the design process, it is not

4In this section, we will assume that a �xed clock length is used for
every control step, in contrast to the method presented by Rouzeyre
in [12] in which the clock length is dynamically changed during exe-
cution to reduce the slack in the current control step.

needed during high-level synthesis, where only the macro-
scopic structure of the circuit is determined.
One appropriate model of the clock length during high-

level synthesis is presented by Chaiyakul and Gajski in [14].
Here the clock length is assumed to have 3 components:
datapath delay, control delay, and wire delay. For the mo-
ment, we will use only the datapath delays to determine
the clock length, and will ignore the control and wire de-
lays, realizing that the actual clock length will be longer
due to those delays; this limitation will be addressed later
in Section III-C. We will also assume a bus-based architec-
ture with a point-to-point interconnection topology, mean-
ing there exists only one bus between any two functional
unit and/or storage unit ports.
De�nition 1: Let ts(reg) and tp(reg) be the setup

time and propagation delay of the registers, and let
tp(interconnect) be the interconnect propagation delay.
If the delay of a functional unit of type k is denoted as
delay (k), the execution delay dk for a register-to-register
transfer executing an operation of type k is given as

dk = delay (k) + ts(reg) + tp(reg) + tp(interconnect):

Throughout the remainder of this section, the set D will be
used to denote the set of all dk's found in the given DFG.
The remainder of this section describes Voyager's

methodology for choosing a set of provably non-inferior
candidate clock lengths. Section III-A describes the
methodology in the absence of chaining, and then Sec-
tion III-B describes the extensions necessary to support
chaining. Finally, Section III-C discusses how controller
delay could be included as well.

A. Determining Candidate Clock Lengths in the Absence
of Chaining

Before discussing Voyager's methodology for determining
candidate clock lengths, it is necessary to have a measure of
the quality of one clock length with respect to other clock
lengths for a particular operation. One such measure that
is commonly used is operation slack, de�ned as follows:
De�nition 2: For a given clock length c, the slack sk of

an operation of type k is given by

sk(c) = c � ddk=ce � dk:

Voyager's methodology determines a minimal set of can-
didate clock lengths in a range [c; �c]. This range is bounded
by c, the minimum clock length possible for implementing
the design's controller, and �c, the largest dk (or maximum
chain length when chaining is considered). One of the goals
of the Voyager 3D design space exploration methodology is
to �nd the minimal set of non-inferior clock lengths c� in
this range that need to be examined in order to �nd the
globally optimal solution.
Unfortunately, the clock determination problem is usu-

ally ignored in favor of ad hoc decisions or estimates, which,
as demonstrated later, can ignore much of the design space
and lead to an inferior design. For example, several previ-
ous clock estimation schemes [15], [16] use the delay of the
slowest functional unit as the estimated clock length. A
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more realistic approach is used in [7], in which a contigu-
ous range of integer candidate clock lengths is heuristically
evaluated in an attempt to provide some guidance as to the
\best" clock length to choose.
However, all of these approaches choose the clock length

before, and independent of, scheduling. Thus they are at
best estimates, since it is never possible to guarantee that a
better schedule with a di�erent clock length does not exist.
Therefore it may seem at �rst that the globally optimal
solution to the 3D scheduling problem cannot be found
without optimally solving the scheduling problem for every
possible clock length { a prohibitively expensive exhaustive
search.
Fortunately, this exhaustive search is not necessary.

In [17], Corazao et al. combined clock length determina-
tion with the problem of operation template matching, and
made some suggestions to reduce the number of candidate
clock lengths. However, the number of candidate clock
lengths can be reduced even further, as shown in our Theo-
rem 1 below (a similar observation was made by Chen et al.
in [18], but presented without proof).
The following theorem shows that only certain clock

lengths in the range [c; �c] must be explored to �nd the
globally optimal clock length c�, when chaining is not con-
sidered, and when clock lengths are not assumed to be
integers:
Theorem 1: c� integrally divides at least one of the reg-

ister transfer delays. More formally, sk(c
�) = 0 for at least

one k 2 K.
Proof: Consider any clock period c such that sk(c) >

0 8 k, and an optimal basic schedule generated using c as
the clock length. We will show that c is not optimal because
there can be found another clock period c0, that leads to a
faster schedule with the same number of functional units
and csteps as the original schedule.
The new clock period c0 can be found as c0 = c��, where

� = minfsk(c)=ddk=ce j k 2 Kg. Substituting De�nition 2
for sk(c), � = minfc � dk=ddk=ce j k 2 Kg, which in turn
implies c0 = maxfdk=ddk=ce j k 2 Kg. This value of c0 can
be used to derive the following relation:

ddk=c
0e = minfddk=ce j k 2 Kg � ddk=ce:

Furthermore, since c0 � c, it also follows that ddk=c
0e �

ddk=ce. These two relations imply ddk=c
0e = ddk=ce, i.e.,

each register transfer takes the same number of control
steps with the new clock c0 as with the original clock c.
Hence the original schedule will still be valid with the

new clock c0. However, since c0 is less than c, it will lead
to a faster execution time while the number of csteps and
functional units remain the same.
Corollary 1: When using integer clock lengths, any non-

integer clock c generated through application of theo-
rem 1 can be replaced by c0 = dce. More formally,
bsk(c

0)=ddk=c
0ec = 0 for at least one k 2 K.

In summary, Theorem 1 and Corollary 1 give a method
for determining a small set of candidate clock lengths CK,
that provably contains the optimum clock length c�. This
set is computed as CK = div(D), where div(D) denotes
the ceilings of all integral divisors of the delays dk that fall

++

* * * *

++

+ +

****

+ +

****

+ +

* * **

+ +

Fig. 6. The AR-Lattice Filter DFG

in the range [c; �c]. In practice, the size of CK is less than
10% of that of the integer range [c; �c].

For example, consider the AR lattice �lter [19] bench-
mark (see Figure 6), the VDP100 module library [7], [8]
(with datapath delays of 48ns for addition and 163ns for
multiplication), and a technology lower bound on the clock
length of 19ns. In the absence of chaining, Voyager's
design space exploration methodologies explore those in-
teger clock lengths in the range [19,163] that are ceil-
ings of the integral divisors of 163 and 48, i.e. CK =
f163; 82; 55; 48; 41; 33; 28; 24; 21; 19g.

B. Determining Candidate Clock Lengths When Chaining

First mentioned in high-level synthesis literature in [20],
chaining refers to the technique of scheduling two or more
data-dependent operations into the same control step, us-
ing the otherwise wasted \slack" time that remains in the
clock period after the �rst operation �nishes. Commonly
used in industry, these chains of two or more operations
may include a variety of arithmetic operations, logic op-
erations, etc. At the register-transfer level, the chain is
implemented by connecting the output of one functional
unit directly to the input of the following functional unit
(i.e., without an intervening register).

De�nition 3: Let ts(reg) and tp(reg) be the setup
time and propagation delay of the registers, and let
tp(interconnect) be the interconnect propagation delay. If
the total delay of the functional units involved in chain ch
is denoted as delay (ch), the chain delay dch for a register-
to-register transfer executing a chain ch is given as

dch = delay (ch) + ts(reg) + tp(reg) + tp(interconnect):

In the discussion of chaining that follows, the length of
the chain will denote the number of operations that are
chained together in sequence. For simplicity, the discussion
will be limited to chains of length 2, although the method-
ologies can be extended to handle longer chains at the cost
of a larger solution space and a corresponding increase in
execution time.
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Type I Type II Type III

Fig. 7. Types of Chaining

We categorize chaining into three types, since treating
each each type di�erently allows us to more fully reduce
the set of candidate clock lengths. These three types 5 are
summarized as follows, and are illustrated in Figure 7:

� type I chaining { the entire chain must execute within
a single control step

� type II chaining { the chain may execute over multiple
control steps (as may one or more of the operations),
but the �nal operation in the chain must start and
�nish within the last control step

� type III chaining { the chain may execute over multiple
control steps (as may one or more of the operations),
but the �rst operation in the chain must start and
�nish within the �rst control step.

Note that type I chaining (the classical form of chaining)
is a special case of type II and type III chaining.

To determine the minimal set of candidate clock lengths
CK when chaining is allowed, the set of operation execu-
tion delays D must be considered in conjunction with the
set Dch of possible chain delays in a given DFG. Thus,
the task of determining the candidate clock lengths for
resource-constrained scheduling with chaining consists of
two steps: (1) �nding the set Dch of all possible chain de-
lays due to potential chains in the DFG, and (2) using D
and Dch to determine a set CK 0 that represents the the
minimal set of candidate clock lengths that must be ex-
plored for the given type of chaining.

B.1 Finding All Possible Chain Delays in the DFG

To �nd all possible chain delays due to potential chains
in the DFG, Voyager performs a depth-�rst search of the
DFG, using a lookahead equal to the maximum chain
length allowed. This recursive algorithm, shown in Fig-
ure 8, �nds all the chain delays in a DFG when invoked
with the call chain clocks(source, 0, 0). The algorithm
runs in O(nl) time, where n is the number of operations in
the DFG, and l is the maximum allowable chain length.

For the AR-lattice �lter benchmark [19] and the
VDP100 [8] module library, the algorithm returns the set
Dch = f211; 96g, corresponding to the operation sequences
f�;+g and f+;+g.

5Note that we do not consider type IV chaining, in which all op-
erations in the chain are multicycled, since this is not really chain-
ing { one operation is not completed within the wasted slack left by
another.

chain clocks(node, chain len, curr delay):

increment chain len

if chain len < MAX CHAIN LEN then

new chain = curr delay + dk(node)

append new chain to set of possible chain delays

for each successor j of node in the DFG

call chain clocks(j,chain len,new chain)

end

Fig. 8. Algorithm for Finding All Possible Chain Delays in a DFG

B.2 Candidate Clock Lengths for Type I Chaining

To determine the set of candidate clock lengths for type I
chaining, the algorithm initially sets CK 0 = div(D)[Dch,
and then removes those clock lengths that cannot lead to
type I chains. 6 For type I chaining, the entire chain
must be scheduled into a single control step, and none
of the chained operations may be multi-cycled, which im-
plies that all clock lengths in CK 0 must be at least as
long as the shortest chain length (� min(Dch)), but can
be no longer than the maximum chain delay (�c). Con-
tinuing the example, the algorithm therefore initially sets
CK 0 = f211; 163; 96; 82; 55; 48; 33; 28; 24; 21; 19g, and then
removes all clock lengths shorter than 96ns. This process
leaves the �nal set of candidate clock lengths to explore as
CK 0 = f211; 163; 96g.

B.3 Candidate Clock Lengths for Type II Chaining

In the case of type II chaining, the algorithm �rst sets
CK 0 = div(D[Dch), and then removes those clock lengths
that cannot lead to type II chains. For a given clock
length, a type II chain can only exist if the second op-
eration in the chain can be scheduled in the slack remain-
ing after the �rst operation in the chain, which implies
that all clock lengths in CK 0 must be longer than short-
est operation delay (> min(D)). Moreover, the longest
chain delay (max(Dch)) can form only a type I chain, and
can also be removed from CK 0. Using the AR-lattice �l-
ter example, this means that the algorithm initially sets
CK 0 = div(f211; 163; 96; 48g), and then removes 211ns and
all clock lengths less than or equal to 48ns from this set,
leaving the set CK 0 = f163; 106; 96; 82; 71; 55; 53g.

However, this set of candidate clock lengths can be
pruned even further, because many of these candidate clock
lengths will actually not support a type II chain. For ex-
ample, consider the clock length of 55ns, which is too long
to multi-cycle an addition, and thus can only multi-cycle a
multiplication. However, the slack left after a multi-cycle
multiplication is 55 � d163=55e � 163 = 2ns, which is less
than dadd, so the chain can not be completed and 55 should
be removed from CK 0. Applying this process further to the
AR-lattice �lter example gives the minimal set of candidate
clock lengths to explore as CK 0 = f106; 71; 53g.

6Note that we only consider Dch, rather than div(Dch), since type
I chaining does not allow chains to be scheduled over multiple cycles.



CHAUDHURI, ET AL: A SOLUTION METHODOLOGY FOR EXACT DESIGN SPACE EXPLORATION IN A 3D DESIGN SPACE 7

B.4 Candidate Clock Lengths for Type III Chaining

As with type II chaining, for type III chaining the al-
gorithm �rst sets CK 0 = div(D [Dch), and then removes
those clock lengths that cannot lead to type III. Under type
III chaining, the only restriction is that the �rst operation
must begin and end within a single control step, which im-
plies that all clock lengths in CK 0 must be longer than the
shortest operation delay (> min(D)). Again, the longest
chain delay (max(Dch)) can also be removed, as it can form
only a type I chain. Using the AR-lattice �lter example,
this process gives the �nal set of candidate clock lengths to
explore as CK 0 = f163; 106; 96; 82; 71; 55; 53g.

C. Considering Controller Delay

In De�nition 1, the register-to-register delay dk of a type-
k functional unit was de�ned as consisting of the func-
tional unit delay, the register setup and propagation delay,
and the interconnect propagation delay. However, the �-
nal system clock length depends not only on data path
components, but also on the controller delays. Therefore
the de�nition of dk should be modi�ed to include the state
register setup and propagation delays, and the propagation
delays through the control logic and next state logic. For
a non-pipelined PLA-based controller, dk can be rede�ned
as:

dk = delay (k) +ts(reg) + tp(reg) + tp(interconnect)

+ts(statereg) + tp(statereg)

+tp(controllogic) + tp(nextstatelogic):

In the presence of chaining, the chain-delay dch can be rede-
�ned in a similar manner. A similar de�nition of register-
transfer delay is given by Gajski et al. [14], [21]. Modi-
�cations can also be made for other (e.g., microcoded or
pipelined) types of controllers.
Since the additional delays are not available at the be-

ginning of the design process, most of the previous work in
high-level synthesis has concentrated solely on the func-
tional unit delay (delay(k)), or possibly the functional
unit and register delays, arguing that the interconnect and
controller delays can not be accurately determined before
scheduling. However, even rough estimates of those addi-
tional delays, determined from a previous iteration of the
design process and treated as constants in the current it-
eration, can sometimes be exploited to produce a better
schedule.
The additional controller-related delays can be accu-

rately determined after logic synthesis [22], or estimated
from an RT-level design [23], and then used in the current
design iteration. For example, the controller delays deter-
mined in the previous iteration can be used in the current
iteration [24], or the system can attempt to predict the
incremental change over the previous delays (the work pre-
sented in [25] is a �rst step in this direction). Similarly,
the interconnect delays can be determined from the maxi-
mum value in the previous iteration [24], or from models of
the layout tools [26], and the register delays can be treated
as constants, or measured more accurately in conjunction
with a detailed retiming model [27].

Once the controller and interconnect related delays have
been determined, the new values of dk and dch can be
used with the techniques described in III-A and III-B to
more accurately calculate the candidate clock lengths. For
pipelined controllers, care must be taken to prevent chain-
ing over conditional statements.

IV. Optimally Solving the Scheduling Problem

In high-level synthesis, the basic scheduling problem is
the problem of determining the control step in which each
operation will execute. After a careful formal analysis of
the scheduling problem [9], we were able to develop well-
structured formulations of those problems, in particular the
TRCS problem. We began by characterizing the set of
feasible schedules in terms of assignment, precedence, and
resource constraints. We then used polyhedral theory to
analyze these constraints to determine the structure of the
corresponding scheduling polytope, and we proved that our
precedence constraints lead to the tightest possible descrip-
tion of that polytope. Finally, once this analysis was com-
plete, that structure was exploited to develop a provably
well-structured Integer Linear Programming (ILP) formu-
lation of the TRCS problem.

This section brie
y introduces Voyager's ILP formulation
of the scheduling problem, and describes the modi�cations
necessary to support chaining [28]. Most previous ILP for-
mulations have considered only type I chaining [29], [30], or
a combination of types I and II [31]. An ILP formulation
that supports all three types of chaining is presented in
[32], but the encompassing methodology does not allow for
multicycling of non-chained operations due to clock length
restrictions in the ILP formulation. In contrast, this sec-
tion describes how all three types of chaining can be incor-
porated into our ILP formulation while still allowing mul-
ticycling of non-chained operations. For a more detailed
description of this formulation in the absence of chaining,
see [9].

A. ILP Formulation of the Scheduling Problem

Voyager's formulation of the TRCS problem can be sum-
marized as follows. If foi j i 2 Ig denotes the set of all op-
erations, and Si denotes the schedule interval [asapi; alapi]
for operation oi, then binary variables xi;s, s 2 Si can
be used to indicate whether or not operation oi is sched-
uled in cstep s. In any feasible schedule, the values of
these variables must satisfy three types of constraints: (1)
assignment constraints (A), which ensure that each oper-
ation is scheduled onto exactly one cstep; (2) precedence
constraints (P), which ensure that each operation is always
scheduled after all of its predecessors; and (3) resource con-
straints (R), which ensure that the schedule does not use
more than the available number of functional units of each
type.

The TRCS problem is the problem of determining
whether or not a feasible schedule exists that satis�es these
constraints, and can be written succinctly as

min f0Tx jMax = 1 ; Mtx � 1 ; Mrx �m ; x integer g:
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where 0 is a vector of zeros, and Ma, Mt and Mr are
the coe�cient matrices due to the assignment constraints,
precedence constraints, and resource constraints, respec-
tively.
The TCS and RCS problems can be de�ned similarly.

Since the RCSs problem minimizes the number of control
steps, a sink operation od is introduced, and the formula-
tion ensures that it is scheduled in the last control step by
making it the successor of all operations that had no suc-
cessors in the original DFG. The total number of control
steps can then computed as

P
s2Sd

sxd;s, and this quan-
tity can be minimized in the objective function of the ILP
formulation

min f
X

s2Sd

sxd;s jMax = 1 ; Mtx � 1 ; Mrx �m ; x integer g:

To support chaining in these formulations, the precedence
constraints described above must be modi�ed. Section IV-
B �rst discusses some modi�cations to the schedule inter-
vals that are necessary, and then Section IV-C presents the
new precedence constraints.

B. Modifying Schedule Intervals to Support Chaining

Before the new precedence constraints can be formu-
lated, new schedule intervals Si must be determined for
each operation oi, i 2 I in the presence of chaining. In the
absence of chaining, given the resource constraints on the
number of FUs of each type, a heuristic such as list schedul-
ing can be used to �nd an upper bound on the total number
of csteps, and then the schedule interval Si can be deter-
mined for each operation oi, i 2 I as Si = [asapi; alapi].
However, these ASAP and ALAP times must be deter-

mined di�erently when chaining is allowed. This section
discusses only the modi�cations necessary to determine the
ASAP values when chaining is supported; the modi�cations
for the ALAP values are analogous.
In the case of type I chaining, the ASAP cstep for each

operation can be determined by placing as many operations
as the maximum chain length will allow into the current
cstep, while ensuring that the sum of the delays of these
chained operations does not exceed the chosen clock.
However, for type II or type III chaining, the situa-

tion becomes more complex due to the interplay between
the maximum chain length and the delays of chained op-
erations. Given a DFG, consider an operation sequence
i ! j ! k in which i and j could be chained, as could j
and k; the ASAP time for k would then be calculated as:

asapk = asapi +minfddi=ce+ ddj=ce � 1; d(di + dj)=ceg

where ddi=ce+ddj=ce�1 represents the case of not chaining
operations i and j, while d(di + dj)=ce represents the case
where i and j are chained (thus not allowing j and k to be
chained). The minimum value of this pair then indicates
whether or not to chain i and j (note that this minimum is
determined independent of k) when generating an ASAP
schedule.

C. Modifying Precedence Constraints to Support Chaining

Once the new schedule intervals have been determined,
the precedence constraints can be modi�ed to support all

three types of chaining, as described in this section.
In the original DFG, each arc aij indicates a precedence

relation
aij ) oi

di�!oj :

The quantity di denotes a continuous-time delay di that im-
plies a continuous-time relation t(j) � t(i) + di, where t(i)
and t(j) denote the instants in continuous time at which
operation oi and oj respectively start execution.
However, during scheduling, time is measured in discrete

control steps, or clocks, rather than in continuous time.
In particular, when a clock of length c is used without
chaining, the previous continuous-time relation is replaced
with the following discrete-time relation:

s(j) � s(i) + ddi=ce;

where s(i) and s(j) denote the control steps in which oi and
oj respectively start execution. Note that s(j) � s(i) + 1,
which is consistent with the assumption that oj can not be
chained with oi.
When chaining is supported, the above discrete-time re-

lation is modi�ed to

s(j) � s(i) + bdi=cc: (1)

to allow oj to begin in the same control step as the one in
which oi �nishes execution.
Now consider a sequence of three operations i, j, and k

that indicates the following precedence relation:

oi
di�!oj and oj

dj
�!ok:

If di + dj � c and dj + dk � c, then chaining requires that
s(j) � s(i) and s(k) � s(j), which implies that s(k) � s(i).
However, if di + dj + dk > c, then the above implication
will lead to an infeasible schedule.
Therefore, to ensure correctness, the following new prece-

dence relation must be added to the DFG:

aik ) oi
di+dj
�! ok:

In other words, from each operation oi, arcs aik must be
added to its nearest successors ok that can not be chained
with it. Determining whether ok can be chained with oi
depends on the type of chaining and the maximum chain-
length; so the decision of adding arc aik is also a�ected by
the type of chaining and the maximum chain-length.
After adding the new arcs for chaining, we use the

modi�ed discrete-time relation (1) to generate the prece-
dence constraints in a similar manner as the non-chained
precedence constraints. A detailed description of the non-
chained precedence constraints can be found in [9].

V. Bounding the Number of Functional Units to

Solve TCS More Efficiently

As discussed earlier in Section II, it is important to gen-
erate tight lower bounds on the number of functional units
(FUs) of each type, so that those bounds can be used as
resource constraints to convert the TCS problem into an
easier-to-solve TRCS problem. Furthermore, these bounds
must be computed e�ciently.
This FU lower-bounding problem can be viewed as a

relaxation of the FU minimization problem. While many
di�erent FU lower-bounding problems can be formed by re-
laxing the minimization problem in di�erent ways, most are
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formed by relaxing the precedence constraints between op-
erations. Precedence constraints have been relaxed in [19]
(and a similar relaxation in [33]), and in the tighter re-
laxations described in [34], [35], [36], and [37] (based on
a method originally proposed by Fern�andez and Bussell
in [38, Theorem 1]).

A di�erent approach, described more formally in [11], is
used in Voyager. This approach starts with an ILP for-
mulation of the FU minimization problem (minimize the
numbermk of FUs of type k 2 K). The problem is then re-
laxed to a generic description of an entire class of FU lower-
bounding problems (the problems above are special cases of
this generic class). From this class, the FU lower-bounding
problem that produces the tightest possible bound is se-
lected and solved. This approach formalizes an entire class
of FU lower-bounding problems and is guaranteed to pro-
duce the tightest possible bound in that class; this bound
was veri�ed to be exact in most of our experiments.

Furthermore, the solution to this FU lower-bounding
problem can be found in polynomial time by solving at
most two LP's, even though the original formulation was
an ILP formulation. Such an LP-based relaxation is chosen
because we want as tight as possible bounds to increase the
e�ciency of solving the TCS problem. However, Voyager
also has a suite of more e�cient heuristic algorithms [10]
that may produce less accurate bounds and are suitable for
a quick �rst pass over the design space.

VI. Bounding the Length of the Schedule to

Solve RCS More Efficiently

This section presents a method of generating a tight
lower bound on the schedule length, so that the RCS prob-
lem can be solved more e�ciently. The method is similar in
principle to the method presented in the previous section
for solving the FU lower-bounding problem.

One early formulation of the schedule length lower-
bounding problem in presence of resource constraints is
presented in [19]; however, the bounds produced by that
approach are very loose. More recent algorithms that pro-
duce tighter bounds are those in [39] and [37] (based on
Jackson's earliest deadline rule (ED-Rule) [40]), and those
in [34] and [36] (based on a theorem originally given by
Fern�andez and Bussell in [38, Theorem 2]). Furthermore,
those algorithms can be applied iteratively (Hu et al. ap-
ply Fern�andez's Theorem 2 in [41], and Langevin applies
ED-Rule in [42]), producing even tighter bounds, although
at the cost of increased algorithmic complexity.

In much the same manner as FU-lower bounding, the ILP
formulation of the schedule-length minimization problem
can be relaxed to a generic description of an entire class of
schedule-length lower-bounding problems. From this class,
the lower-bounding problem that produces the tightest pos-
sible bound (the problems above are special cases of this
generic class) is chosen and solved. This approach for-
malizes an entire class of schedule length lower-bounding
problems, and is guaranteed to produce the tightest bound
of all possible precedence relaxations in polynomial time.

Time

Clock Csteps ns (Mult, Add)

Time Constraint = 902ns

82 11 902 (4, 2)

55 15 825 (4, 2)

48 18 864 (5, 2)

41 22 902 (4, 2)

33 26 858 (4, 2)

28 30 840 (4, 2)

24 34 816 (4, 2)

21 41 861 (4, 2)

19 45 855 (4, 2)

Time Constraint = 760ns (tightest)

24 31 744 (6, 2)
TABLE II

AR { TCS-3D Results

2 *, 1 + 2 *, 4 + 4 *, 2 + 6 *, 3 + 6 *, 4 +

Clock Cs ns Cs ns Cs ns Cs ns Cs ns

163 13 2119 10 1630 8 1304 8 1304 8 1304

82 18 1476 18 1476 11 902 11 902 11 902

55 26 1430 26 1430 15 825 14 770 14 770

48 LB 1440 LB 1440 LB 864 LB 816 LB 816

41 LB 1435 LB 1435 LB 861 LB 779 LB 779

33 LB 1452 LB 1452 LB 858 LB 792 LB 792

28 LB 1456 LB 1456 LB 840 LB 784 LB 784

24 LB 1440 LB 1440 34 816 31 744 31 744

21 LB 1449 LB 1449 LB 819 LB 756 LB 756

19 LB 1444 LB 1444 LB 817 LB 760 LB 760
TABLE III

AR { RCS-3D Results Without Chaining

VII. Experimental Results

To demonstrate the accuracy and performance of Voy-
ager's 3D scheduling methodology, we conducted a se-
ries of experiments using the well-known AR-lattice Fil-
ter (AR) [19], Elliptic Wave Filter (EWF) [6, p.206], and
Discrete Cosine Transform (DCT) [43] benchmarks. We
used the VDP100 module library from [7], [8], giving a
datapath delay of 48ns for addition, 56ns for subtraction,
and 163ns for multiplication. For each benchmark, we per-
formed Time-Constrained 3D Scheduling (TCS-3D), and
Resource-Constrained 3D Scheduling (RCS-3D) with and
without chaining, using the methodologies presented in
Section II.

A. AR Filter

The TCS-3D results for the AR �lter are presented in
Table II. They show, for each of two time constraints,
those clock lengths from the candidate set that lead to a
feasible schedule (the other clock lengths lead to infeasi-
ble schedules regardless of the number of functional units
available).
For a time constraint of 902ns, eight clock lengths (82ns,

55ns, 41ns, 33ns, 28ns, 24ns, 21ns, and 19ns) led to the min-
imum number of functional units. Of these, the schedule
for the 82ns clock (ddmult=2e) requires the fewest control
steps (and thus potentially the smallest controller), and so
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2 *, 1 + 2 *, 4 + 4 *, 2 + 6 *, 3 + 6 *, 4 +

Clock Cs ns Cs ns Cs ns Cs ns Cs ns

211 12 2532 9 1899 6 1266 5 1055 4 844

163 13 2119 9 1467 LB 1304 LB 1141 LB 978

96 18 1728 LB 1536 11 1056 LB 1056 LB 864
TABLE IV

AR { RCS-3D Results for Type I Chaining

2 *, 1 + 2*, 4 + 4 *, 2 + 6 *, 3 + 6 *, 4 +

Clock Cs ns Cs ns Cs ns Cs ns Cs ns

106 17 1802 17 1802 9 954 8 848 8 848

71 LB 1491 LB 1491 LB 923 11 781 11 781

53 LB 1431 LB 1431 LB 848 14 742 14 742
TABLE V

AR { RCS-3D Results for Type II Chaining

would be preferable. Note that the 48ns clock { one of the
\obvious" ad hoc guesses (dadd) { requires an additional
multiplier.

To �nd the fastest possible design, the critical path
length was used to derive the tightest possible time con-
straint of 760ns. For this time constraint, only one clock
length { 24ns { led to a feasible schedule, and thus to the
optimal 3D schedule.

The RCS-3D results for the AR �lter are presented in Ta-
bles III-VI. Some schedule lengths of interest are shown in
boldface, and those that were lower-bounded by the RCS-
3D methodology are shown in gray along with the lower-
bounded schedule length. As described in Section II-B, the
TRCS problem was not solved for those clock lengths, since
each would result in a schedule that was longer than the
shortest schedule found for the previous clock lengths.

In the absence of chaining, schedule lengths are shown
for every candidate clock length in Table III. In this ta-
ble, the fastest schedules correspond to clock lengths of
55ns, and when su�cient resources are available, 24ns.
Again, it is interesting to note that neither of these clock
lengths is an obvious ad hoc guess (55 is ddmult=3e, and
24 is both ddmult=7e and ddadd=2e), which means that the
fastest schedule might be missed using more conventional
methodologies. Furthermore, although the clock length of
24ns would correspond to a larger number of control steps
(and perhaps a larger controller), that small clock length
does result in the optimal 3D schedule, because the smaller
clock lengths tend to reduce the operation slack.

Similarly, in the presence of chaining, schedule lengths
are shown for every candidate clock length in Tables IV-VI.
For a given clock length (such as 163ns), chaining usually
improved the schedule when there were su�cient resources
available, but provided no improvement when the number
of resources was small. Furthermore, for some clock lengths
and resource constraints, one type of chaining provided the
largest improvement, while for other clock lengths and re-
source constraints, another type provided the largest im-
provement.

Finally, looking at all these results over all candidate
clock lengths, note that type II chaining gave the fastest

2 *, 1 + 2 *, 4 + 4 *, 2 + 6 *, 3 + 6 *, 4 +

Clock Cs ns Cs ns Cs ns Cs ns Cs ns

163 13 2119 9 1467 7 1141 7 1141 6 978

106 17 1802 LB 1484 10 1060 9 954 LB 848

96 18 1728 LB 1536 11 1056 LB 960 LB 864

82 18 1476 LB 1476 11 902 11 902 LB 902

71 LB 1491 LB 1491 LB 923 12 852 11 781

55 26 1430 26 1430 15 825 14 770 14 770

53 LB 1431 LB 1431 LB 848 LB 795 LB 795
TABLE VI

AR { RCS-3D Results for Type III Chaining

Time

Clock Csteps ns (Mult, Add)

Time Constraint = 1394ns

82 17 1394 (3, 3)

55 25 1375 (2, 2)

48 29 1392 (2, 2)

24 58 1392 (2, 2)

Time Constraint = 1035ns (tightest)

24 43 1032 (4, 3)
TABLE VII

EWF { TCS-3D Results

overall chained schedule (742ns), slightly faster than the
fastest unchained schedule (744ns), and with half the num-
ber of control steps. Type III chaining's performance was
poorer (770ns), but at least tied with the unchained sched-
ule at that same clock length (55ns). The best schedule
from type I chaining (the \standard" form of chaining),
however, was considerably worse than the best unchained
schedule (844ns vs. 744ns).

B. Elliptic Wave Filter (EWF)

The TCS-3D results for the EWF are presented in Ta-
ble VII. Again, they show, for each of two time constraints,
those clock lengths from the candidate set that lead to a
feasible schedule.

For a time constraint of 1394ns, three clock lengths
(55ns, 48ns, and 24ns) led to the minimum number of
functional units. Of these, the schedule for the 55ns clock
(ddmult=3e) requires the fewest control steps (and thus po-
tentially a smaller controller), so would be preferable. Note
that this is a di�erent clock length than the one chosen
for the AR �lter, illustrating the importance of taking the
structure of the DFG into account.

To �nd the fastest possible design, the critical path
length was used to derive the tightest possible time con-
straint of 1035ns. For this time constraint, only one clock
length { 24ns { led to a feasible schedule, and thus to the
optimal 3D schedule.

The RCS-3D results for the EWF are shown in Ta-
bles VIII-XI. In the absence of chaining, the 24ns and
55ns clock lengths correspond to the fastest schedules.
Again, for a given clock length, chaining usually improved
the schedule when there were su�cient resources available.
However, neither form of chaining was able able to �nd an
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ASAP 1 *, 2 + 2 *, 2 + 3 *, 3 +

Clock Cs ns Cs ns Cs ns Cs ns

163 14 2282 16 2608 16 2608 14 2282

82 17 1394 21 1722 18 1476 17 1394

55 20 1100 29 1595 22 1210 21 1155

48 23 1104 LB 1632 26 1248 25 1200

41 34 1394 LB 1599 LB 1230 LB 1189

33 37 1221 LB 1617 LB 1221 LB 1190

28 40 1120 LB 1596 44 1232 42 1176

24 43 1032 66 1584 48 1152 46 1104

21 57 1197 LB 1596 LB 1155 LB 1113

19 60 1140 LB 1596 LB 1159 LB 1121
TABLE VIII

EWF { RCS-3D Results Without Chaining

ASAP 1 *, 2 + 2 *, 2 + 3 *, 3 +

Clock Cs ns Cs ns Cs ns Cs ns

211 7 1477 14 2954 14 2954 10 2110

163 9 1467 15 2445 15 2445 10 1630

96 12 1152 20 1920 16 1536 13 1248
TABLE IX

EWF { RCS-3D Results for Type I Chaining

overall faster schedule than the fastest unchained schedule.

C. Discrete Cosine Transform (DCT)

The TCS-3D results for the DCT are presented in Ta-
ble XII. The �rst set of results are for a time constraint of
500ns, corresponding to a design will run at 2MHz. Eight
clock lengths produced feasible schedules, but only one {
24ns { led to the minimum number of functional units.
To �nd the fastest possible design, the critical path length
was used to derive the tightest possible time constraint of
434ns, and only one clock length { 24ns { led to a feasible
schedule and thus to the optimal 3D schedule.
The RCS-3D results for the DCT are presented in Ta-

ble XIII. In the absence of chaining, the 56ns clock length
(dsub) corresponds to the fastest schedule. This time, not
only could type I chaining not �nd an overall faster sched-
ule than the fastest unchained schedule, but it could not
even improve the schedule for a given clock length over the
unchained schedule, probably due to the severe resource
constraints.

D. Methodology Run Times

Voyager's design space exploration methodologies con-
sists of three main tasks: computing the minimal set of can-
didate clock lengths, computing tight bounds on the num-
ber of functional units or on the schedule length, and solv-
ing the TRCS problem. The minimal set of candidate clock
lengths can be computed quickly, and the bounds can be
computed by solving at most two linear programs in poly-
nomial time, as discussed in Sections V and VI. Finally,
the TRCS formulation used in Voyager is well-structured,
meaning that it converges on the optimal solution faster
than an arbitrary formulation.
To motivate the need for solving the TCS or RCS prob-

lem by �rst computing bounds and then solving the re-

ASAP 1 *, 2 + 2 *, 2 + 3 *, 3 +

Clock Cs ns Cs ns Cs ns Cs ns

106 11 1166 19 2014 15 1590 12 1272

71 17 1207 LB 1775 19 1349 LB 1278

53 20 1060 LB 1643 LB 1219 LB 1166
TABLE X

EWF { RCS-3D Results for Type II Chaining

ASAP 1 *, 2 + 2 *, 2 + 3 *, 3 +

Clock Cs ns Cs ns Cs ns Cs ns

163 9 1467 15 2445 15 2445 10 1630

106 11 1166 19 2014 15 1590 13 1378

96 12 1152 20 1920 16 1536 13 1248

82 17 1394 21 1722 18 1476 LB 1394

71 17 1207 LB 1775 19 1349 LB 1420

55 20 1100 29 1595 22 1210 21 1155

53 20 1060 LB 1643 LB 1219 LB 1166
TABLE XI

EWF { RCS-3D Results for Type III Chaining

sulting TRCS problem, consider the result of solving the
TCS problem directly for a time constraint of 1394ns and
a 24ns clock on the EWF benchmark. Even with a well-
structured formulation such as Voyager's, solving this prob-
lem directly took over an hour of CPU time (using LINDO
on a Sun SPARCstation 2). In contrast, we spent only 1.51
sec to compute the lower bounds on the number of func-
tional units, and only 7.75 sec to solve the TRCS problem
{ solving the same problem in two orders of magnitude less
time!
On a larger benchmark { the DCT { for a time constraint

of 500ns and a 24ns clock, we spent 8.28 sec to compute the
lower bounds on the number of functional units, and 2.62
sec to solve the TRCS problem. Again, directly solving the
TCS problem for this case took over an hour.
In general, the best designs for each example were gener-

ated within seconds. However, for very small clock lengths
(e.g. 19ns), the ILP for the TRCS problem becomes quite
large, and in some cases would have taken hours to �nd the
exact solution. Fortunately, even in those cases the bounds
were produced fairly quickly, and could often obviate the
need to solve the TRCS problem for those clock lengths as
described in Sections II-A and II-B.

VIII. Summary and Future Work

This paper has de�ned a new problem { the 3D schedul-
ing problem { and has presented an exact solution method-
ology to solve that problem without resorting to a time-
consuming exhaustive search. This solution methodology
is exact { it is guaranteed to �nd the optimal clock length
and schedule. Furthermore, it is e�cient { it prunes infe-
rior points in the design space through a careful selection
of candidate clock lengths (an important design parame-
ter too often determined by guesswork or estimates), and
through tight bounds on the number of functional units or
the length of the schedule. It can optimally solve medium-
sized problems in seconds, as opposed to more conventional
techniques that might require hours. Thus it eliminates the



12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5, NO. 1, MARCH 1997

Time

Clock Csteps ns (Mult, Add, Sub)

Time Constraint = 500ns (2MHz)

56 8 448 (11, 7, 4)

55 9 495 (15, 5, 6), (13, 6 4)

48 10 480 (16, 5, 6)

33 15 495 (11, 7, 4), (15, 5, 4)

28 17 476 (11, 7, 4), (15, 5, 4)

24 20 480 (11, 4, 4)

21 23 483 (11, 7, 4), (15, 5, 4)

19 26 494 (11, 5, 4), (15, 7, 4)

Time Constraint = 434ns (tightest)

24 18 432 (16, 5, 6)
TABLE XII

DCT { TCS-3D Results

5 Mult, 3 Add, 2 Sub

Clock Csteps ns

163 9 1467

82 10 820

56 14 784

55 LB 825

48 LB 816

41 LB 820

33 LB 792

28 28 784

24 LB 792

21 LB 798

19 LB 798

5 Mult, 3 Add, 2 Sub

Clock Csteps ns

219 9 1971

211 9 1899

163 9 1467

104 10 1040

96 10 960

TABLE XIII

DCT { RCS-3D Results Without Chaining, With Type I

Chaining

need to replace exact techniques with heuristic algorithms
or estimates in an e�ort to obtain acceptable performance
{ a claim not possible with any existing solution method-
ology.
Although this methodology is a step toward solving the

scheduling problem in the context of a larger problem,
much work remains for the future. The next step is to
carefully extend the methodology to support conditionals,
module selection and type mapping, and wiring and regis-
ter costs.
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