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Abstract

In this paper, we present a formal analysis of the
constraints of the scheduling problem, and evaluate
the structure of the scheduling polytope described by
those constraints. Polyhedral theory and duality the-
ory are used to demonstrate that e�cient solutions of
the scheduling problem can be expected from a carefully
formulated integer linear program (ILP). Furthermore,
we present an algorithm to lower bound the resource
requirement of the time-constrained scheduling problem
that enables us to solve the ILP more e�ciently.

1 Introduction

The scheduling problem in high-level synthesis is con-
cerned with sequencing the operators of a control/data
ow graph (cdfg) in correct order. This optimiza-
tion problem, is speci�ed in two ways: (1) resource-
constrained scheduling (RCS) minimizes the number
of control steps when the number of FU's are �xed;
(2) time-constrained scheduling (TCS) minimizes the
number of resources when the number of control
steps is �xed. We can also consider a third prob-
lem, called time-and resource-constrained scheduling
(TRCS), which optimizes a given objective function
when both the number of functional units and the
number of control steps are �xed. The decision prob-
lem [2] corresponding to TRCS is known to be NP-
complete [8], therefore at present none of the schedul-
ing problems can be solved in polynomial time.
To solve the scheduling problem, both heuristic

scheduling algorithms and ILP-based algorithms have
been used. Although an ILP formulation always solves
the scheduling problem optimally, care has to be taken
so that the formulation can be also be solved e�ciently
(because solving a general ILP is an NP-hard prob-
lem [2]). It has been said in [5] that \formulating a good
model is of crucial importance to solving the model".
Therefore, to e�ciently solve the scheduling problem,
it is important to use a structured formulation, and a
mathematical analysis of the constraints is needed to
�nd a structured formulation.
Well-known ILP-based schedulers are CHARM [7],

ALPS [4], and OASIC [3]. Among them, only the OA-
SIC system has identi�ed some structure in the (prece-
dence) constraints. Instead of extending such analysis,
recent work on ILP-based scheduling algorithms [9] has
concentrated on adding additional design parameters
into the formulation in order to solve a more global
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problem. Because of the robustness of the general ILP
model, a correct formulation can always be extended
with additional design parameters. However, an in-
depth mathematical analysis of all the constraints of
the scheduling problem is still lacking, even though it
is extremely important for improving the e�ciency of
the ILP approach.
The motivation for this paper is not to present just

another ILP model for the scheduling problem, but to
formally analyze the ILP approach to the scheduling
problem, which will serve as a theoretical basis for fu-
ture improvement to this approach. In the next section,
we present a general ILP formulation that can be used
to solve the three scheduling problems. In the limited
space of this paper, we will exclude RCS from our dis-
cussion. For e�ciency, we add resource constraints to
a TCS problem to convert it into a TRCS problem,
as discussed in Section 3. The analysis of TRCS and
further improvement of the formulation is outlined in
Section 4. The experimental results in Section 5 are
used to show the validity of the predictions made from
the analysis, and the e�ectiveness of solving TRCS in-
stead of directly solving TCS. This paper will assume
single-cycle operators only; however, the formulation
can be extended to multicycle operators.

2 ILP Formulation of the Problem

Given a cdfg let I be the index set of all operators, and
oi ! oj indicate a precedence relation, which means
that operator i must �nish execution before operator j
can start. Suppose the cdfg is to be scheduled onto a
set S of control steps. As-soon-as-possible (ASAP) and
as-late-as-possible (ALAP) schedules give a continuous
range Si of control steps, called the schedule interval,
over which an operator oi can be scheduled.
The type of an FU indicates its functionality (eg.

multiplication, addition). Let K be the set of types
that are available. Let ak and nk respectively be the
area and number of functional units of type k 2 K.
The type of the operators are determined by the type
function � : I ! K. � (i) = k means operator oi is
executed on a functional unit of type k.
The values of nk and S can be �xed or variables

depending on the scheduling problem being solved. In
TCS, the total area

P
k2K aknk is minimized for a �xed

S. In RCS, jSj is minimized for �xed values of nk.
In TRCS, both S and nk are �xed. In all cases the
same preliminary formulation, to be presented in this
section, can be used with di�erent objective functions.
Consider the set of nodes V =

�
(i; s)ji 2 I ; s 2 Si

	
,

where a node (i; s) indicates the event that operator oi
is scheduled in control step s. Each operator oi cor-
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Figure 1: Constraint graph (a) The precedence graph (b) The
corresponding constraint graph

responds to a set of nodes Vi =
�
(i; s)js 2 Si

	
. Fur-

thermore, each functional unit type k relates, for each
control step s, to a set of nodes Vk;s =

�
(i; s) j s 2

Si ; � (i) = k
	
. Each feasible schedule Q � V con-

tains exactly one node from each Vi, satis�es all the
precedence constraints between operators, and uses no
more than the available number of functional units.
The feasible schedules will be described by the follow-
ing notations:
xQ A real jV j-vector (xQ 2 RjV j), called the incidence

or characteristic vector of Q, where Q � V , de-
�ned as follows:

xQi;s =

�
1; if (i; s) 2 Q
0; if (i; s) 62 Q

Q Set of all feasible schedules.

2.1 Constraint Graph

Before we can characterize Q, we need to introduce
the constraint graph (Gc), which is de�ned as Gc =
fV;E1 [ E2g. The edges in E1 are called assignment
edges, and the edges in E2 are called precedence edges.
The assignment edges connect the nodes of V in such a
way that each Vi represents a clique. When stated for-
mally, E1 =

�
(v1; v2) j 9 i such that v1; v2 2 Vi

	
. The

precedence edges connect two nodes in V that cannot
simultaneously belong to a feasible schedule because of
a precedence conict. Formally, E2 =

�
(v1; v2) j v1 =

(i; s1) ; v2 = (j; s2) ; s1 � s2 ; oi ! oj
	
.

A precedence clique (Cp) is de�ned as a clique in Gc

that contains at least one edge from E2. All of these
de�nitions are illustrated in Figure 1.

2.2 Description of the Scheduling Polytope

The scheduling polytope constitutes the feasible region
for our integer linear programming (ILP) formulation
of the scheduling problem, and is de�ned as the convex
hull of the incidence vectors of all feasible schedules as
described below:

PI(Q) = convfxQ 2 RjV j j Q 2 Qg
We have de�ned PI(Q) in a way such that its extreme
points are integral, and thus denote feasible schedules.
It is known that the worst case performance of an

ILP is exponential in time. However, if we can describe

the feasible region PI(Q) with only a set of linear equal-
ity and inequality constraints (omitting the integrality
constraints), then a linear program (LP) will produce
the optimal solution to the ILP. An LP can be solved
in polynomial time; therefore, we will attempt to de-
scribe PI(Q) as tightly as possible using only equality
and inequality constraints, so that the ILP solution can
be e�ciently found by solving a small number of LP's.
The set Q of all feasible schedules is described in

terms of the incidence vector x of its subsets in the fol-
lowing way:

xi;s � 0; 8 (i; s) 2 V (O)

jxVij =
X
v2Vi

xv = 1; 8 i 2 I (A)

jxCpj =
X
v2Cp

xv � 1; 8 Cp 2 V (Sec 2.1)(P)

jxVk;sj =
X

v2Vk;s

xv � nk; s 2 S; 8 k (R)

xi;s integer (I)
The constraints (A), (P), and (R) are called the as-
signment, precedence, and resource constraints, respec-
tively.
The above constraints can be represented in the

form fx 2 R
jV j
+ j Max = 1 ; Mpx � 1 ; Mrx �

n ; x integer g, where Ma is the coe�cient matrix due
to the assignment constraints,Mp is the coe�cient ma-
trix due to the precedence constraints, and Mr is the
coe�cient matrix due to the resource constraints. If
we denote the fractional scheduling polytope as:

PF (Q) = fx 2 R
jV j
+ jMax = 1 ; Mpx � 1 ; Mrx � n g

(1)
then we can write:

PI(Q) = convfx 2 PF (Q) j x integer g (2)
The description of PI(Q) requires, in addition to equal-
ity and inequality constraints, the variables to be in-
tegral. Using this preliminary description, we will ex-
amine in Section 4 how much it possible to avoid the
integrality constraints so that the ILP can be solved
quickly by solving a set of LP's.

3 Lower Bounding the Resources for a
TCS Problem

The previous section has stated that the TCS (time-
constrained scheduling) problem can be solved by min-
imizing

P
k2K aknk for a �xed S. However the ILP

can be solved more e�ciently if we add some resource
constraints to TCS, changing the problem into a time-
and resource-constrained scheduling (TRCS) problem.
In this section we will discuss a method for generating
tight resource constraints for TCS.
Instead of treating nk; k 2 K as variables, we want

to �x the values of nk to reduce the search space. How-
ever, now we need a method to estimate an accurate
lower bound on the amount of resources, so that tight
values for nk can be found. We accomplish this by
quickly solving a relaxation of the TCS problem.
We relax TCS by ignoring the precedence relations

between operators; thus its ILP formulation is similar
to the original formulationwithout the precedence con-
straints (P). A feasible assignment (FA) assigns each
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Step 1 (initialization):

pkst = number of operators of type k
with [ASAP, ALAP] = [s; t ]

P k
s;t = 0

Step 2:
for s = jSj : : :1 do

tmpt = 0
for t = s : : : jSj do

tmpt = ps;t + tmpt
P k
s;t = P k

s;t�1+ tmpt
n?k = maxfn?k; d

Ps;t

t�s+1eg
end

end
Figure 2: Algorithm LBND1

operator to exactly one control step within its schedule
interval. Our problem is to �nd the FA that requires
the minimum FU area,

P
k2K aknk. It can be easily

seen that each nk can be minimized independently, be-
cause the operators can be executed on only one type
of FU and the precedence relation between operators
have been relaxed.
The algorithmLBND1, presented above, can be used

to compute the minimum values of nk; k 2 K. Let pkst
be the number of operators with ASAP time s and
ALAP time t. We de�ne another quantity P k

s;t to de-
note the number of operators whose ASAP and ALAP
times are within the closed interval [s; t ]. The values
of pkst can be computed while �nding the ASAP and
ALAP schedules. The concentration of operators in
interval [s; t] is indicated by P k

s;t=(t� s+ 1). It will be
shown that the minimum number of FU's, n?k, is given
by the maximum operator concentration of all the in-
tervals. The algorithm to compute the values of P k

s;t

and n?k is presented in Figure 2.
To see how the algorithm works, consider the data-

ow graph in Figure 3 (a). The schedule interval of
each operator for a total schedule length of 4 control
steps is shown in Figure 3 (b). The values of pkst for the
data ow graph are given in Figure 3 (c), and the corre-
sponding values of P k

s;t are given in Figure 3 (d). Maxi-
mum operator concentration occurs in the shaded box,
and the corresponding value of n?k is found as d

10
3 e = 4.

Although the algorithm is intuitively plausible, the
correctness proof is somewhat long, and will be omitted
in the interest of space. From Figure 2 it can be easily
seen that the complexity of LBND1 is independent of
the number of operators, and is given byO(jSj2), where
jSj is the number of control steps.

4 Analysis of the Structure of the TRCS
Problem

The previous section has shown how we covert an in-
stance of the TCS problem to a TRCS (time- and
resource-constrained scheduling) problem by using the
algorithm LBND1. In the rest of the paper we will
consider the ILP formulation of TRCS, for which both
nk and S have been speci�ed. The e�ciency of an
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Figure 3: Execution of algorithm LBND1. (a) Data ow graph
(b) Schedule intervals of operators (c) Values of pst (d) Values
of Pst. Maximum operator concentration occurs in the interval
[2,4] as indicated by the shaded box.

ILP algorithm depends on how tightly we can de�ne
PI(Q) without using the integrality constraints. In
Section 2, we �rst de�ned PF (Q) in terms of the assign-
ment, precedence, and resource constraints, and then
obtained PI(Q) by adding the integrality constraints.
The purpose of this section is to examine how close

PF (Q) is to PI(Q). Although a thorough examination
is as hard as solving the scheduling problem itself, we
can get some useful information by selectively dropping
some of the constraints.
First we drop the precedence constraints, and

consider the subset of PF (Q), called the resource-
assignment polytope PF (R), that satisfy the resource
and the assignment constraints, and is described as:

PF (R) = fx 2 R
jV j
+ j Max = 1 ; Mrx � ng

Next we drop the resource constraints and consider the
subset of PF (Q) called the precedence-assignment poly-
tope, that satisfy the assignment and precedence con-
straints, and is described as:

PF (N ) = fx 2 R
jV j
+ j Max = 1 ; Mpx � 1g

We can show that the polytopes PF (R) and PF (N ) are
integral polytopes. The proofs of these properties in-
volve extensive use of polyhedral theory and graph the-
ory, and are given in [1]. The signi�cance of the these
results is that, as long as the resource constraints and
the precedence constraints are considered independent
of each other, the constraints presented in our formu-
lation are the tightest constraints possible.
The original scheduling polytope PF (Q) is the in-

tersection two integral polytopes PF (R) and PF (I).
However, this does not necessarily imply PF (Q) is in-
tegral. It can be easily demonstrated with a coun-
terexample [1] that PF (Q) can have fractional extreme
points (i.e. PI(Q) � PF (Q)), so an LP-relaxation of
the problem could lead to fractional solutions, and we
will have to use branch-and-bound to �nd the integral
optimal solution. In order for the branch-and-bound
approach to be successful, it is important to �nd a
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sharp bound on the objective function, so that branches
can be pruned e�ciently.
The structure of PF (Q) presented above can be in-

terpreted using duality theory [6] to prove that the
bounds produced by the LP-relaxation are as good
as the bounds from the Lagrangian relaxation. La-
grangian bounds are tight and have led to the success
of other combinatorial optimization problems. Such
tight bounds increase the likelihood that the optimum
solution can be found in a small number of branches,
as will be illustrated through experimental results.
In order to further improve the formulation we have

to tighten the description of PF (Q) so that it approxi-
mates PI(Q) more closely. This can be done by intro-
ducing new valid inequalities which take into account
the e�ect of the precedence and resource constraints
upon one another. We will present a class of valid in-
equalities in the following:
Valid Inequality Let jxVk;sj � nk be a resource
constraint of Q. Consider a minimal clique cover
Vk;s =

Sp

l=1 Vl where each Vl represents a clique made
by precedence edges. If, for each v 2 Vk;s, pv gives the
number of cliques that contain v, then the following ex-
pression is a valid inequality of Q,X

v2Vk;s

cvxv � nk (3)

where cv = maxf1; nk + pv � pg

5 Results

The analysis of the ILP formulation presented in the
previous section provides us with a theoretical ground
to expect optimal solutions in a relatively few number
of branches. In this section we will demonstrate the
validity of this prediction using two benchmark exam-
ples: the 34-operator elliptical wave �lter (EWF), and
the 48-operator discrete cosine transform (DCT).
It should be noted here that any ILP approach pro-

duces optimal results, so we can not expect our sched-
ules to be better than other ILP solutions. Instead,
our objective was to o�er a theoretical foundation for
evaluating the ILP formulation. Thus for our purposes,
we will use the number of branches taken by the ILP
as the indicator of performance. We will demonstrate
that the number of branches are small, as we predicted
in the previous section.
The scheduling results are shown in Tables 1 and 2;

we used an objective function that tries to minimize
the number of registers. First we solved LBND1 to �nd
lower bound on resources and then solved the ILP to
construct the schedule. In a couple of cases, the bounds
given by LBND1 were too tight for a feasible schedule;
in those cases we speci�ed a larger number of FU's until
a feasible schedule could be found. The \LV" column
indicate the maximum number of live variables that
cross a control step boundary.
We also solved the TCS problems for the above

benchmarks to observe their performance. These for-
mulations are less structured, and are expected to re-
quire greater computation time. For EWF, the TCS
problems could be solved to optimality; however, they
took a larger number of branches. For DCT, the ILP
solver failed to produce the optimal results in some
cases even after hundreds of branches. This indicates

No. of Non-Pipelined Pipelined
csteps Mult Mult

Total Loop ALU Mul LV Branch ALUMul LV Branch
17 17 3 3 10 0 3 2 10 0
18 18 2 2 9 0 3 1 10 0

2 2 9 0
18 16 3 2 10 0 3 1 10 0
19 19 2 2 9 0 2 1 9 0
19 17 2 2 9 0 2 1 9 2
21 21 2 1 9 0 2 1 9 1
21 19 2 1 9 0 2 1 9 0

Table 1: Scheduling Results for the Elliptic Wave Filter

No. of Non-Pipelined Pipelined
csteps Mult Mult

ALUMul LV Branch ALUMul LV Branch
7 6 5 12 1 6 8 11 1
8 5 4 12 1 5 6 13 4
9 4 3 13 2 4 6 13 1
9 4 4 13 1 5 6 13 0
9 5 4 12 1 5 7 0

Table 2: Scheduling Results for the Discrete Cosine Transform
Example

that although any ILP formulation theoretically leads
to optimal results, a careful choice should be made in
order solve it e�ciently.

6 Conclusion

In this paper, we have presented an ILP formulation
of the scheduling problem, and have formally evalu-
ated the structure of the formulation in the presence
of time and resource constraints. Formal analysis has
been performed to indicate that the e�ciency of the
ILP formulation on the benchmark examples is not
an arbitrary event { we have given a theoretical ba-
sis for expecting e�cient solutions from our ILP based
scheduling algorithm. To further increase the e�ciency
of solving a TCS problem, a methodology has been pre-
sented to add resource constraints by optimally solving
a relaxation of TCS.
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