Multi-dimensional Skyline to find shopping malls

Md "Amir" Amiruzzaman Suphanut "Parn" Jamonnak Zhengyong Ren

Introduction

In market research predicting customer movement is very important. While customers to decide which shopping mall to go to depends on many uncertain or probabilistic factors, so, it is not easy to compute their movement ahead of time. However, with the help of uncertain or probabilistic data management, it is possible to compute customer choices with some certainty.

Skyline query?

- Minimize price (x-axis)
- Minimize distance to beach (y-axis)
- Points not dominated by other points
- Skyline contains everyone's favorite hotel regardless of preferences

Problem statement

Formal (mathematical) definitions of problems

Let, $U = \{u_1, u_2, u_3, ..., u_n\}$ are users/customer who shops in different shopping malls, $S = \{s_1, s_2, s_3, ..., s_n\}$. However, users have preference which can be represented as keyword $K = \{k_1, k_2, k_3, ..., k_n\}$.

The distance of each shopping malls are $D = \{d_1, d_2, d_3, ..., d_n\}$, and price of products $C = \{c_1, c_2, c_3, ..., c_n\}$, however, we may consider total cost or sum of products, i.e., . Based on previous visits of each shop, probability to pick a shop can be denoted as, $P = \{p_1, p_2, p_3, ..., p_n\}$.

Note that, different shops may sale different types of goods, $G = \{g_1, g_2, g_3, ..., g_n\}$, and facilities (e.g., restaurant, kids zone, bar, etc.) in each shopping mall may vary as well, $F = \{f_1, f_2, f_3, ..., f_n\}$

If we are interested to know about a particular user (i.e., query user, u_q), then this problem can be represented as a multi-dimensional skyline problem. As such, shorter distance, lower cost, more facilities, higher variety of goods are desirable. Also, for the simplicity of the problem, we will consider higher probability or mostly visited shopping malls first (see Figure 1).

Objective

We would like to let the query user (u_q) to use a tool to find the shopping mall based on all the parameters we mentioned earlier. The tool will find a shopping mall using the multidimensional skyline query.

We also want to perform a user study to find how to improve user experience and usability of this proposed tool.

Literature Review

 Probabilistic Skylines on Uncertain Data Jian Pei, Bin Jiang, Xuemin Lin, Yidong Yuan
 Computing All Skyline Probabilities for Uncertain Data Mikhail J. Atallah, Yinian Qi
 Skyline Query Processing for Uncertain Data

Mohamed E. Khalefa, Mohamed F. Mokbel, Justin J. Levandoski

Probabilistic Skyline on Uncertain Data

Very Large Data Bases (VLDB), 2007

Example of Calculating Skyline Probability

4 instances of A
3 instances of B
3 instances of C
3 instances of D

• The probability Pr(D) that D is not dominated by other objects is given by: $\frac{1}{3} \times ($ $(1 - \frac{1}{4}) +$ $(1 - \frac{1}{4}) \times (1 - \frac{2}{3}) +$ $= \frac{7}{12}$ D has three instances $Case of d_1$ $Case of d_2$ $Case of d_3$

Computing All Skyline Probabilities for Uncertain Data

Mikhail J. Atallah CS, Purdue University West Lafayette, IN 47907-2107, USA mja@cs.purdue.edu Yinian Qi CS, Purdue University West Lafayette, IN 47907-2107, USA yqi@cs.purdue.edu

Main Contributions:

- The First Sub-Quadratic Algorithm for Computing All Skyline Probabilities
- New Probabilistic Skyline Analysis
- More General Uncertain Data Model

Probabilistic Skyline

The probability for an instance to be a skyline point is called the instance's skyline probability.
The object's skyline probability is the sum of the skyline probabilities over all its instances.

Figure 3: Skyline computation with uncertainty

Α					В		C	
a_1	a_2	a_3	a_4	a_5	b_1	b_2	c_1	c_2
0.3	0.2	0.1	0.1	0.2	0.2	0.4	0.5	0.5

Table 1: Instance probabilities in Figure 3

For example, B has two instances b1 and b2. b2 is not dominated by any point, so its skyline probability is simply its own probability 0.4. For b1 to be a skyline point, none of the points that dominate b1 (i.e., a2, a4, b2, points in the rectangle) should exist. Hence its skyline probability is 0.2 * (1 - 0.2 - 0.1) = 0.14. The skyline probability of B is 0.54.

The Grid Method

Notation	Meaning
m	number of all uncertain objects
n	number of all instances
d	number of dimensions
O_i	the <i>i</i> th uncertain object
n_i	number of instances of O_i
S	the set of all instances $(n = S)$
S_i	the set of instances of O_i $(n_i = S_i)$
p	point/instance in S
$Pr_{sky}(\cdot)$	skyline probability
$D_{S,i}(p)$	instances of O_i in S that dominate p
$\sigma_i(p)$	sum of probabilities of O_i 's instances
	that dominate p
eta(p)	the probability that p is not dominated
	by any instance of other object

$$Pr_{sky}(p) = Pr(p) \cdot \beta(p)$$

In Figure 3, instance b1 is dominated by instances a2, a4 and b2. Therefore, $\beta(b1) = 1 - (Pr(a2) + Pr(a4)) = 0.7$. $Pr_{sky}(b1) = Pr(b1) \cdot \beta(b1) = 0.14$

1.Process the horizontal grid lines:

Figure 4: Space partitioning using a grid

$$\sigma_i^*(p) = \sum_{p' \in S_i, p' < hp} Pr(p')$$

Example 7: In Figure 4, p_1 is an instance of O_1 with probability 0.8, p_2 and p_4 are instances of O_2 with probability 0.5 each, p_3 and p_5 are instances of O_3 with respective probabilities 0.6 and 0.1. Then for p_4 on the *horizontal line* $h_1, \sigma_1^*(p_4) = \sigma_2^*(p_4) = 0$ while $\sigma_3^*(p_4) =$ 0.6.

2. Process the vertical grid lines

Figure 4: Space partitioning using a grid

$$\sigma_i(p) = \sigma_i^*(p) + \sigma_i(p') + \begin{cases} Pr(p') & \text{if } p' \in S_i \\ 0 & \text{otherwise} \end{cases}$$

Example 8: To compute $\sigma_i(p_4)$'s from $\sigma_i^*(p_4)$'s computed in Example 7, we follow Equation 5 (take i = 3 for example):

$$\sigma_3(p_4) = \sigma_3^*(p_4) + \sigma_3(v) + 0$$

= $Pr(p_3) + \sigma_3^*(v) + \sigma_3(p_5) + Pr(p_5)$
= $0.6 + 0 + \sigma_3^*(p_5) + 0.1 = 0.7$

Similarly, we compute $\sigma_1(p_4) = 0.8$, $\sigma_2(p_4) = 0.5$.

Skyline Query Processing for Uncertain Data *

Mohamed E. Khalefa University of Minnesota Minneapolis, MN, USA khalefa@cs.umn.edu Mohamed F. Mokbel University of Minnesota Minneapolis, MN, USA mokbel@cs.umn.edu Justin J. Levandoski University of Minnesota Minneapolis, MN, USA justin@cs.umn.edu

Related work Threshold Tolerance Query Continuous Range & 1-NN 5 _ _ 1-NN 1 _ 3 1-NN V [4]k-NN _ Rank 14.18_ _ Reserve Skyline 13 _ 19 Top-k _ _ _ 8 Top-k _ _ 17 Rank _ _ -16 Skyline _ _ Our work Skyline

 Table 1: Related Work

Figure 1: Skyline example over data with uncertain ranges

This paper propose an efficient framework that supports skyline queries for uncertain data represented as a continuous range.

Uncertainty reduction

•An ordered pair of objects (Q,P) qualifies to uncertainty reduction only if the endpoint of Q dominates the endpoint of P.

Reduce the upper bound probability for an object
P by removing a portion of its uncertainty range
which would have a zero probability being a
skyline object.

Example:For object V, as the endpoint of the uncertainty range eV does not dominate any other endpoint, V doesn't have any uncertainly reduction.

For object R, eR dominates eU, eT, and eS, so, the pairs (R,U), (R,T), and (R,S) qualify for uncertainty reduction. This results in reducing the uncertainty range of U to be [2-5] instead of [2-6]. Since the reduced range is one quarter of the original range, the upper bound probability of U is set to 75%.

Respectively. Figure 2b gives the result of all points after the uncertainty reduction with their upper probability bounds, pruning objects S, T and U.

Implementation

Data collection

1. Collect data from

http://www.shoppingcenters.com with detail report for each shopping mall (focused in Cleveland/Akron areas)

- 2. Manually fill in the spreadsheet
- 3. Selecting attributes:
 - a. Shopping Mall Name (Text)
 - b. Shopping Mall Code (ID)
 - c. Stores (Number)
 - d. Parking Space (Number)
 - e. Household Income (Number)
 - f. Population (Number)
 - g. Food Court (Yes/No)
 - h. Facilities and Categories (Total Sum)
- 4. Total: 90 Shopping Malls (Remove missing data)

DIRECTORY	
"Detail Report" — 1 listings — Issued: Nov	ember 26, 2017
Project Name	Belden Park Crossings
Mail Code	CH0088
Address	I-77 & Everhard Rd. NW
	North Canton, OH 44720
County	Stark
Website	http://www.ddr.com
Details / Physical Features	12/10/12/10/0
Center Classification	Power Center
Retail GLA	596,038 sqft.
Design of Center	Open
Number of Stores	29 1997
Year Opened / To Open	
Site Size Number of Levels	n/a 1
	1 Round
Shape Number of Parking Spaces	Nound
Center contains a Food Court	No
Year Last Renovation/Expansion Completed	N0 1998
Expansion / Renovation Planned	No
Comments	There is a Red Roof inn adjacent to this center. Also a
Comments	America's Best Value Inn & Suites behind Kohl's.
Sales / Market Data	
MSA (Metropolitan Statistical Area)	CANTON-MASSILLON, OH
Nearest Major City	Canton (distance: n/a)
Nearest Competing Center	Belden Village Mall (distance: n/a)
Total Sales (including anchors)	nia
Sales per sq.ft. (excluding anchors)	nia
Avg. shoppers / week	n'a
Avg. shoppers / month	nia
Avg. shoppers / year	n/a
General Demographics	5397
Average Household Income	\$62,800
Population of Primary Market	359.300
Distance of Primary Market	nia D
Page 1 — © 1999-2017 Di Trend d Printed exclusively for Sopha	errographic data s
	Sandusky 3 Elyria orwalk
ns:/hhoppingcenters.com/reports/details/CH90088	rus Mansfield Canton

Data Preparation and Preprocessing

- Generate geolocation (Latitude and Longitude) for each shopping mall
- Apply indexes with
 2-dimensional points for each shopping mall
- Import spreadsheet to PostgreSQL Database using PgAdmin4
- DB name = "Shopping Mall" with 1 table as global view

vser	20 D	ashboar	d 😋 i	Properties	SQL 🗹 Statistics	Dependencies	Depende	ents 🕴 Edit Data	- PostgreSQL 10 - sh	oppingmal
Servers (1)		B	- Q	- 91	B & C.	T - No limit	- 4 .		*	
		_								
🖻 🚍 Databases (2)				pingmall - pu	<u> </u>					
🖶 🍧 postgres		1 SELECT * FROM public.global								
Go Casts										
Catalogs										
Event Triggers										
🕮 🥽 Extensions	Data	Output	Expla	in Messag	es Ouery History					
⊕ 줄 Foreign Data Wrappers ⊕ 국 Languages ⊕ � Schemas (1) ⊕ ♥ public ⊕ ∱ Collations		Mall text	Code text	Address text	Latitude double precision	Longitude double precision	County text	Classification text	StoresNumber integer	ParkingSpace integer
		Cree	OH0	Mentor A	41.682385	-81.296145	Lake	Power Center	16	104
		TriCo	OH0	Canton R	41.031288	-81.427592	Summit	Community Ce	33	250
		Mark	OH0	Rtes. 177	41.085218	-81.517221	Summit	Power Center	23	256
A Domains A Domains A Domains A Domains	4	Seve	OH0	Mayfield	41.520434	-81.555816	Cuyahoga	Power Center	42	4
FTS Dictionaries	5	Lega	OH0	Cedar & R	41.501311	-81.497694	Cuyahoga	Lifestyle/Special	60	262
Aa FTS Parsers	6	The	OH8	NWC Roy	41.308471	-81.820271	Cuyahoga	Power Center	18	176
🕒 🔞 FTS Templates	7	The	OH9	Home Av	41.117384	-81.485025	Summit	Power Center	48	
🐵 📑 Foreign Tables	8	Univ	OH0	Warrensvi	41.501372	-81.536214	Cuyahoga	Regional Center	26	250
🐵 🤇 🕼 Functions	9	Stow	OH0	NWQ SR 5	41.178859	-81.417194	Summit	Community Ce	36	140
Materialized Views	10	Grea	OH1	1480, Gre	41.415599	-81.901766	Cuyahoga	SuperRegional	125	530
13 Sequences	11	Rich	OH1	Wilson Mi	41.538967	-81.497168	Cuyahoga	SuperRegional	85	452
🖶 🖶 Tables (1)		River	OH0	W. River R	41.39877	-82.107254	Lorain	Power Center	20	139
🖨 📄 Columns (28)	13	Cuya	OH9	SR8 & Ho	41.119119	-81.477852	Summit	Community Ce	12	
- Mall	14	The	OH0	Northfiel	41.314211	-81.539079	Summit	Power Center	15	
- 🚦 Code	15	Broo	OH9	NEC Sno	41.403904	-81.80127	Cuyahoga	Community Ce	27	
- 📋 Address	16	Midt	OH0	Broadvie	41.404854	-81.734558	Cuyahoga	Community Ce	28	10
🖳 📋 Latitude	17	Nort	OH0	Great Nor	41.418946	-81.901818	Unknown	Community Ce	17	

Methodologies and Design

- 1. Web-Interfaces
- 2. Front-End: HTML and JavaScript
- 3. Styles: Bootstrap
- 4. Back-End: PHP
- 5. External Library:
 - a. Google Maps API
 - b. Google Direction Services API
 - c. Some pre computation libraries
- 6. Database: PostgreSQL

System Workflow

Dynamic Location and Preference

- 1. User Location
 - a. Interaction: Dragging marker over map
- 2. User Preferences
 - a. Anchor: Walmart, Giant Eagles, Target
 - b. Services: Chase Bank, NTB Car Repair
 - c. Miscellaneous: Yankee Candle, Toy R Us
 - d. Hi-Tech: At&t, Time Warner, Gamestop
 - e. Foods and Restaurants
 - f. ..
- 3. User input will **dynamically** change the SQL command of Sky-line Query

Specility Stores Barbers and Beauty

Children Apparel Gifts, Cards, Books

Women's Wear Men's Wear

Jewelry Entertainment

Unisex Family Clothing Shoes

Technology and Games

Food and Restaurants

Skyline-Query Methods

Shopping Mall	Stores Number	Parking Space	Household Income	Population
s1	50	20	\$20,000	10000
s2	20	0	\$50,000	20000
s3	40	100	\$30,000	7000
s4	60	40	\$40,000	8000
s5	30	50	\$45,000	5000

No shopping mall better than another on every criteria.

While no one best shopping mall, we want to **eliminate shopping mall** which are worse on all criteria. In this case is "s2"

Skyline-operator

• Skyline Operator

Ο

SELECT * FROM global SKYLINE OF Distance MIN, Stores Number MAX, Parking Space MAX, Household Income MIN, Population MIN, ...

Can we write SQL query without using Skyline operator?

Skyline Implementation in N-dimension

- There are several Skyline-Algorithms presented
- In our project, we Implement a regular SQL query with Skyline Operator:
 - SELECT *

FROM ShoppingMall S WHERE NOT EXISTS (SELECT * FROM ShoppingMall S1 AND S1.Distance <= S.Distance AND S1.StoresNum >= S.StoresNum AND S1.ParkingSpace >= S.ParkingSpace AND (S1.Distance < S.Distance OR S1.StoresNum > S.StoresNum OR S1.ParkingSpace > S.ParkingSpace));

- This SQL query is equivalent to previous example but without skyline operator
- After generate the result, we sort it by distance in descending order

Block-nested Loop (BNL) Algorithms

- Block Nested Loop
- Compare each tuple with one another
- Window in main memory contain best tuple
- Write to temp file (if window has no space)
- Implement in javascript and compare it with SQL-Skyline result
- pick an optimal shopping malls.

Window (main memory)

Data Files (tuple)

Example Result

	Dominate Shopping Mall	
1.	The Shoppes at Parma	
2.	The Greens of Strongsville	
3.	Southland Shopping Center	
4.	Midtown Plaza	
5.	Brunswick Town Center	
6.	Ridge Park Square	
7.	Great Northern Mall	
8.	Southgate USA	
9.	Beachcliff Market Square	
10.	Medwick Marketplace	

Evaluation Result

- Select 10 Participants
- Rating 1 to 5 based on our ranking result
- Collect comment and feedback
- Will include this part in final report

Conclusion

- There are several Skyline-Query algorithms out there, we found that our SQL command and BNL methods is cumbersome, expensive to evaluate, and huge result set
- Both BNL and SQL command need to improve
 - E.g. Create Self-Organizing list for BNL algorithms
- Our system works with dynamic user input
- Future Work
 - Implement more Skyline algorithms (R-tree, Divide and Conquer, K-NN)
 - Evaluate and summarize which algorithm is the best to rank shopping mall from our dataset.
 - Perform user study with the domain experts

Md "Amir" Amiruzzaman Suphanut "Parn" Jamonnak Zhengyong Ren