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Prediction of MPEG-Coded Video Source Traffic
Using Recurrent Neural Networks
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Abstract—Predicting traffic generated by multimedia sources is  nity. In order to adapt the allocated bandwidth among network
needed for effective dynamic bandwidth allocation and for multi- ~ end-users dynamically, it is imperative to predict the traffic gen-
media quality-of-service (QoS) control strategies implemented at grated by end-users. Currently, multimedia is responsible for an

the network edges. The time-series representing frame or visual . . : ) - .
object plane (VOP) sizes of an MPEG-coded stream is extremely increasing fraction of traffic over networks and this trend is ex-

noisy, and it has very long-range time dependencies. This paper Pected to continue. If algorithms for the prediction of traffic gen-
provides an approach for developing MPEG-coded real-time video erated by multimedia sources are developed, then they could
traffic predictors for use in single-step (SS) and multistep (MS) pre-  significantly aid in the design of efficient dynamic bandwidth
diction horizons. The designed SS predictor consists of one recur- gj|ocation mechanisms.

rent network for I-VOPs and two feedforward networks for P- :

and B-VOPs, respectively. These are used for single-frame-ahead . The:-re are many problemg faced Whgn t.ransportllng mul-
prediction. A moving average of the frame or VOP sizes time-se- timedia streams, such as V,'deo or audio, in real-tlr.ne. over
ries is generated from the individual frame sizes and used for both Networks that offer no service guarantees. The majority of
SS and MS prediction. The resulting MS predictor is based on re- these problems originate from the delay-sensitive nature
current networks, and it is used to perform two-step-ahead and of multimedia content. Irrespective of the method used to
four-step-ahead prediction, corresponding to multistep prediction transport media content over an IP network, there is a strict

horizons of 1 and 2 s, respectively. All of the predictors are designed .. . .
using a segment of a single MPEG-4 video stream, and they are timing sequence that must be used by the decoder during

tested for accuracy on complete video streams with a variety of Playback. For acceptable playback experience, all relevant
quantization levels, coded with both MPEG-1 and MPEG-4. Com- Packets must be available at the destination for assembly when
parisons with SSprediction results of MPEG-1 coded video traces needed and in the correct sequence. An obvious, and simple,
from the recent I_ite_rature are presented. _No similar results are gg|ytion to this problem is destination-side buffering and,
available for prediction of MPEG-4 coded video traces and for MS - e recently, edge-caching. The tradeoff of this approach is
prediction. These are considered unique contributions of this re- ! . . N
search. that the media content is not delivered to the destination in
real-time or even in near real-time. Even though many media
applications, such as streaming and on-demand video and
audio, are tolerant to such large delays in delivery, there are
numerous applications that require real-time or near real-time
|. INTRODUCTION media delivery, such as gaming, conferencing, telephony and

URRENTLY, the motivation for predicting video Sc)urceteleoperatlon applications. One of the problems encountered in

traffic bit rates arises from at least two important consioﬁfforts to design and implement edge-based QoS control in IP

erations in multimedia networks. These are dynamic bandwi(ﬂﬁtwork for' appl!cat|ons requiring real-time or near 'reali-tlme
. . ) .content delivery is the need to know the source traffic bit-rate
allocation and quality-of-service (QoS) control of real-tim

. . ime-series; future values of this time-series are needed.
multimedia streams transported over networks that do not offer,

. . I\{Iost of the reported research in multimedia source traffic
service guarantees, e.g., best-effort networks, such as intern

rotocol (IP) networks. It is quite possible that future nef—)r diction has dealt with the development of stochastic
P . ' quite pos : sgurce models. These models are tested by demonstrating that
worked computing needs and applications may bring forwa,

. ; : . . . .. histograms and correlation functions constructed from data
additional circumstances in which source traffic prediction o .
becomes critical extracted after utilizing the models match well with the cor-

. responding quantities derived from the raw video stream data.

Efficient and fair utilization of available bandwidth is a topi . .
that has garnered much attention in the networking comrr?me paper written by Bae and Suda [1]is a good survey of such

video models. The authors of [2]-[5] propose different kinds of
source video models based on neural networks, Markov chains,
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been done in the development of predictive models that cdoward the end, the present paper makes the following contri-
capture the inherent nonstationarities and nonlinearities assditions:

ated with MPEG-coded real-time video streams and that can be. development of SSPs for estimating MPEG-coded video
used in real time. Chang and Hu [13] investigate the application  source traffic time-series:

of a pipelined recurrent neural network (PRNN) for the adap- « development of MSPs for recursively estimating MPEG-
tive traffic prediction of MPEG video signals over ATM net-  coded video source traffic time-series within a finite future
works. Two research papers presented by Doulana. [14] horizon;

and [15] investigate the application of neural networks for non- « demonstration of the ability of the developed predictors
linear traffic prediction of VBR MPEG-coded video sources. In to perform equa”y well on video sequences encoded with

a very recent paper by Doulanesal. [16], the authors propose varying quantization levels and differing MPEG encoding
an adaptable neural-network architecture covering online and schemes.

offline traffic modeling. This paper has results obtained from ex- 1,4 paper is organized into six sections. In Section I1, a brief

periments performed on four sources encoded using MPEG-@eyiew of MPEG coding is presented. Section Il summarizes

~Adas [17], [18] proposes an adaptive linear predictor fQpe architectural details and the learning algorithms used in de-
video source traffic prediction. Both a W|e_ner—H0pf and @eloping the neuro-predictors. Section IV presents the imple-
normalized least mean square (NLMS) predictor are used gfdhtation results of this study and discusses the relevant out-
compared for performance. Based on the original work @hmes. Comparisons with published resuits from the literature

Adas, Yoo [19] develops an adaptive traffic prediction schemgg o154 reported in this section. In the final section, a summary
for VBR MPEG video sources that includes an analysis of the, 4 <ome conclusions from this study are presented.
effects of scene changes and traffic variations on the predic-

tion errors. Yoo selects an adaptive time domain prediction
technique using the LMS algorithm and considers multiplexed
video streams, exhibiting different statistical properties in MPEG standards define the guidelines for the vast array of
comparison to single video streams. The paper providesemacoders that generate a compliant bit stream from videos and
methodology to predict the sizes of theand P-frames. Even motion pictures and the methods used by decoders to interpret
though theB-frames are predicted using a linear LMS schem#jem. The point to be noted is that MPEG does not specify
prediction errors for theB-frames alone are not reportedguidelines on how to create an encoder. This implies that MPEG
Rather, prediction errors for complete video traces are givaitoes not impose any restrictions on technologies that are used
Yoo motivates the reported research on the need for a dynainithe creation of encoders or decoders (also known as codecs).
resource allocation method in multimedia networks. In MPEG-1, the term sequence of pictures represents a com-
The works of both Adas and Yoo considepth-order, linear plete video clip. The next relevant definition is that of GOPs. An
single-step predictor (SSP). The coefficients are adapted onliMPEG-1 bit stream consists of a repeating GOP structure. The
The research papers by Adas [18], Doulaetisl. [14]-[16], GOP consists of pictures coded in three different ways and ar-
Chodorek and Chodorek [12], Chang and Hu [13], and Yaanged in arepetitive structure. The next unit down the hierarchy
[19] are the most relevant to the current research. The wasgdrames Frames are the basic building blocks of any MPEG-1
by Adas [18], Yoo [19], and Chodorek and Chodorek [12] repstream.Macroblocksare the units that make up each frame. A
resent some of the most comprehensive information about thacroblock contains all the information required for an area of
achieved SSP errors, while utilizing video traces that can peture representing 16 16 luminance pixels.
obtained from a public archive [20]. As a result, SSP compar-There are basically three types of frames in MPEG-1 bit-
isons can be presented with respect to any of these publisaceam.
tions. Adas also reports SS predictions for time-series com- « |ntraframes [-frames): Anintraframe or I-frameis a

prised of group of pictures (GOPs) or group of video object  frame that is encoded using only information from within
planes (GOVs) [18]. These schemes are still considered SSPs  that frame. It is a frame that is encoded spatially with no
and not multi-step-ahead predictors (MSP)s because only the jnformation from any other frame.

next (or one-step-ahead) prediction of a variable, in this case « Nonintra frames P-frames andB-frames): Nonintra

the GOP (or GOV), is estimated. In addition to the lack of MSP frames use information from outside the frame, i.e., from
results in the literature, no predictors for MPEG-4 video traces  the frames that have already been encoded. In nonintra

Il. MPEG VIDEO CODING

have been reported thus far. o frames, motion-compensated information is used for
Inthe current paper, a method is presented for designing SSPs a3 macroblock. This results in fewer data than directly
and MSPs for estimating video source traffic levels within a fi- Coding the macroblock. There are two types of nonintra

nite future horizon. The intended use of these predictors is on-  frames—predicted frames R-frames)and bidirectional
line and in real time. Past measured or predicted source level in-  frames @B-frames) The I-frame is typically used as a

formation is utilized as inputs in designing the predictors. Such  reference for creating thB and P frames. To encode a

predictors must be equally useful irrespective of the P-frame, each macroblock in thB-frame will search
1) video quality generated, i.e., the quantization level; for a matching macroblock in the encodddframe.
2) nature of video content, i.e., low- action versus high-ac-  Residuals of the macroblocks must be considered if they
tion video; are not identical. ThusP-frames are predicted from the

3) specific encoding scheme used by the encoder. I-frames and otheP-frames.B-frames are encoded by
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I1l. NEURAL NETWORK PREDICTORS
A. Neural Network Architectures

Two neural network architectures are used in this research: a
feedforward multilayer perceptron (FMLP) and a recurrent mul-
tilayer perceptron (RMLP). An FMLP is simply the standard
feedforward neural network. An RMLP is a multilayer network
where each hidden layer possesses crosstalk connections. The
crosstalk serves to add memory to the network, making it suit-
able for modeling dynamic systems. Each of the processing el-

ements of an RMLP is governed by the following equations:
using the information froni-frames as well a®-frames.

This is known asidirectional encoding N
A typical MPEG GOP can be represented by the se- Z[l;i](t):Zw[ld][l;i]‘v[ld](t—l)
quence of frames/BBPBBPBBPBB, as well as =1

IBBPBBPBBPBBPBB. The entire video clip com- Nu-y

prises of this sequence of frames repeating itself. The sequence + Z w1, 41, 0%p-1,5(1) + by (1)
IBBPBBPBBPBB is called a regular GOP sequence as j=1

it can be characterized by two parameter&—and N. M/ and

represents the distance between tixframes, whereasV zp, (t) =op, g (z[,,i](t)) (2)

represents the distance between tWeframes. In the case ] ]

shown aboveM = 12, andN = 3. Although it is quite easy wherez ;1(t) represents the internal state_varlable of ttre

to construct irregular GOPs, they are not used in real-tinf@de at theith layer for samplet; =y, ;(¢) is theith node
multimedia streams. However, they are used in other applictput of theith layer for samplet, and by, ;) is the bias of
tions like DVDs. B-frames require both the preceding as wel® node;wy, ;i is the weight associated with the link
as succeeding anchor files for decoding. This is the rease@ween thgth node of theth layer to theith node of the'th

that P-frames are sent earlier than tiframes of a GoOp. layer. Furthermore; represents the discrete time at which the
For a playback sequence dBBPBBPBBPBB---, the node and network outputs_are computed, with the r_lode index
transmission sequenceli® BBPBB - - -. The arrows of Fig. 1 * = 1, .., N, and layer indext = 1, ..., £, and with the
depict these frame dependencies. J.[l7i](-) for the input and output Iaye($_ =1landl = L) being

The main objective for the formulation of MPEG-4 is enlinear. The functionoy ;(-) for the hidden-layer nodes is a
coding video and audio at very low rates. Another objective fluashing function, and in this studynh(-) is used. The term
to increase error resilience to packet losses. The MPEG-4 r-i) Provides the bias for each node. The processing elements
chitecture has made it possible for the generation of many néfyan FMLP are also governed by equations similar to (1) and
types of applications. Introduction of objects is one of the si¢2)- However, in (1), the contribution of the first sum is not
nificant contribution of this standard. Different parts of the financluded.
scene can be coded and transmitted separateligae objects . _
andaudio objectso be brought together by the decoder. Separg: Formulation of the Neuro-Predictors
tion of objects allows interaction with the objects. This feature The two neural networks described above are used to con-
is very useful in games and educational software. struct two types of predictors.

Each of the objects in an MPEG-4 image is a visual object Single-Step-Ahead Predictors (SSP3he value of the time-
plane (VOP). Therefore, each object in a scene is represensedies at the time steip+ 1 is predicted using time-series mea-
by a series of VOPs in time. This is not true for static objects gurements up time In other words
video images. The static objects can be represented by a single
VOP. A VOP contains texture and shape data associated with the gt +1[t) = f(U(t)) 3)
respective object. VOPs are analogous to frames in the earlier i i )
versions of MPEG standards. VOPs (and frames) can be cod@bereu(t) represents time-lagged values of the time-series,
using the discrete cosine transform (DCT) or DCT and motidH/tPutsy(-), or transformations of the time-series, inputs),
compensation techniques. up to timet. That is

The next level of upper hierarchy in the MPEG-4 standar
is GOV. GOVs are similar to GOPs in earlier versions of thg/{(t) (@), - y(t=ny+1), ult), ..o u(t=na+1)] (4)
MPEG standard. They provide points in the bitstream where th@mreny andn,, are the maximum number of lags in the outputs
VOPs are coded independently from each other. Video sessigfyi inputs, respectively.

(VS) is the top video level of the MPEG-4 standard. It com- Myltistep-Ahead Predictors (MSPs)Ehe value of the time-
prises of all video objects, irrespective of their nature of origigeries at the time stept 1 is predicted recursively, using time-

in the scene. As defined in the earlier versions of the MPE&aries measurements up timme p + 1, wherep > 1. TheMSP
standard, encoder syntax must support many coding possiiyation is expressed as

ities. The blocks of the images in an MPEG-4 stream can be .
coded as eithef-, P- or B-VOPs. gt+1]t—p+1)=fU®1)) (5)
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where TABLE |
PEAK/MEAN AND MEAN BIT RATE (MBR) oF MPEG-4 TRACES

() = [§ 1= p+ 1), oo Gt =y + 1]t = p+ 1)

w(d), ..., u(t—na +1)] (6) Trace Peak/Mean(Xmq4z/X) | MBR(Mbps)

Aladdin 7.1 0.4

where the variables are as previously defined. If the inp(ts ARD Talk 5.7 0.4

for ¢ > t—p+1are not available, best estimates of thesi Jurassic Park 1 14 08
guantities can be used instead.

In both of the aforementioned SSP and MSP formulation: Star Wars 6.8 0.3

the functionalf(-) can be approximated either by an FMLP or____ Die Hard III 6.6 0.2

an RMLP. This results in four combinations of neuro-predictors ~ Lecture Room 11.9 0.1

o ) ) Silence of the Lambs 21.4 0.1

C. Training Algorithms for Neuro-Predictors Skiing 08 02

To train an FMLP network used in SSP, the standard back-
propagation (BP) algorithm is utilized (see Haykin [21]). For
training an RMLP network in the SSP, the algorithm developed the online implementation of adaptive predictors. Neverthe-
by the authors in [22] is used, whereas for training either a@ss, in recent studies, it has been demonstrated that online pa-
FMLP or an RMLP network for MSP, the algorithm develope@ameter adaptation of neuro-predictors can further improve their
by the authors in [23] is used. The latter method minimizes gedictive accuracy compared to neuro-predictors implemented
objective function that is presentative of the MSP nature of thgiline with fixed parameters [24], [25].
problem, rather than an SSP objective function error typically In a recent study, a comprehensive computational complexity
found in many recurrent neural network learning algorithmgnalysis of FMLP and RMLP predictors has been performed,
This is a dynamic learning algorithm that takes into accougemonstrating that real-time implementation of such predictors
the propagation of any weight change throughout the predictigfindeed feasible [26]. In addition, recently, such neuro-predic-
horizon, as well as with the network output update iteration. Thérs have been implemented on a fixed-point arithmetic digital
error gradients for this algorithm are quite complex, and they asgynal processor (DSP), and their real-time operation has been
not repeated here due to space limitations. These gradients hayserimentally verified at much higher sampling rate require-
been recently published in full (see [23]). ments than the video source traffic prediction application pre-

In addition to the specific training algorithms used, selectiogented in this study [27]. In fact, real-time neuro-predictor op-
of the stopping point during learning and network architectuegation has been experimentally verified at a 1000-Hz sampling

determination are two important aspects of neuro-predictor d@te, as opposed to the 25-Hz sampling rate of the current appli-
sign. Throughout this study, procedures that are well known @ation (25 frames/s).

the neural network community are used in stopping the learning
and in network architecture selection [21]. Cross-validation is

used to determine the stopping point during learning. A segment
of the training set is set aside and not used during network gfa- Generation of Video Sequences Used

rameter updates. Rather, network performance is tested on thighe video traces used are obtained from [28]. This Internet
cross-validation segment of the training set. site, which is maintained by the Telecommunication Networks
Group of the Technical University of Berlin, Berlin, Germany,
is an excellent repository of downloadable MPEG-4 &hd63

The predictors proposed in this study are intended to wovideo traces. A technical report available at the site provides
online and in real time. Predictors based on neural networldse details of the procedure used in generating the video traffic
and in fact on many other nonlinear estimation tools, are vemaces [29]. The video was played from VHS tapes using an ordi-
time consuming to design, i.e., train and validate. Neverthelessry video cassette recorder. Uncompressed YUV information
once training is complete, the predictor execution, which is aleb each video was grabbed using the tbtikgrab  (version
called the recall phase, is quite fast, enabling its real-time if-15.10) [30] at a frame rate of 25 frames/s in the QCIF format.
plementation. The recall phase of a neuro-predictor requires &ke luminance resolution was 1%6144 picture elements (pels)
ecution of a few multiplication and additions per processingnd 4 : 1: Ichrominance subsampling at a color depth of 8 bits.
element or node, depending on the size of the preceding nEfis information was stored on a disk. The stored YUV frame
work layer, and execution of @nh function per node, imple- sequences were used as input for both the MPEG-4 encoder
mented as a look-up table. An additional advantage of such pagd the H.263 encoder. The encoding was not performed in
dictors, as opposed to the adaptive linear predictors proposeddal-time. Mean bit rate (MBR) provides information about the
[18] and [19], is that online network weight adaptation is nqticture quality of the traces used. Table | provides MBRs of the
typically needed because of the good generalization achieweédeo data traces used in the current research.
during off-line training. The proposed predictors are adaptive, Each of the considered video sequences has been coded
but all parameter adaptation is performed offline, as opposedusing three different quantization levels. Depending on the
LMS-type predictors, which are continuously adapted. This réevel of quantization, encoded sequences have been categorized
duces the impact of various convergence problems encounteirgd high, medium, and low quality. The following sequences

IV. NEURO-PREDICTORIMPLEMENTATION RESULTS

D. Real-Time Implementation of Neuro-Predictors
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were chosen for the current research work: Aladdin, ARD Talk, The thrust of this research is to show that a generic predictor
Jurassic Park I, Star Wars, Die Hard Ill, Lecture Room, Silencan be obtained for use in the prediction of video source traffic

of the Lambs, and Skiing. irrespective of the encoding parameters of the video data traces.
o Attempting to identify very complex parameters that would in-
B. Video Sequence Used for Training dicate whether a video trace is representative enough to be used

For all predictors designed in this study, only a segment #¥training might eliminate the intent of this study. As witnessed
the Aladdin video sequence is used for training and cross-vAY the results of the sections to follow, the developed predic-
idation, i.e., out-of-sample testing, to determine the stoppift@fs are generic to some extent, and they can be used to predict
point for the training process. After fixing all of the network pathe video source traffic for a wide range of MPEG-coded video
rameters, the developed predictors are tested on the remairfitigams without any tuning.
segment of the Aladdin sequence and on all other complete
video sequences mentioned above. All time-series are scafedPerformance Metrics
by a single scaling factor so that they lie mostly in the range Three types of errors were used as performance metric for
from —0.5 to 0.5, making them suitable for processing by th@e prediction schemes developed in the current workSI(g}
neural network. Some of the details of the video data tracggsd 5*(']') for j = 1, ..., N denote the actual time-series and
used in the current research, along with the segments useehi® predicted time-series. The first error measure is the ratio be-
training and cross-validation, are as follows: The total numbggeen the sum of the square of the prediction error and the sum
of VOPs in each data trace is 89 998, the number-¥OPs in  of the square of the actual time-series values. This performance
each data trace is 7500, the numberfbVOPs in each data metric is called relative mean square error (RMSE) and is rep-
trace is 22500, and the number BfVOPs in each data traceresented by the following equation:
is 59998. The fraction of-VOPs used for training (1500) and
cross-validation (500) i8000/7500 = 0.27, and the fraction JXV: (S(j) — 8(5))?
of P-VOPs used for training (1500) and cross-validation (500) ’

_ =t
is 2000/22500 = 0.09, whereas the fraction oB-VOPs RMSE= N x 100. ™
used for training (20000) and cross-validation (10000) is ,215(3)
30000/59998 = 0.5. =

Looking at the final prediction results, it appears that the The second performance metric measures the maximum error
training sets are sufficient to capture the structure underlying thed is termed the maximum absolute error (MAE), as follows:
video data traces used in this research and some others reported .
in the literature employing a different coding scheme. It is diffi- ME = 13}% 1S(5) = SG)I- (8)
cult to ascertain whether or not the self-similar behavior of the T
data, if any, has been captured. In some sense, this is somewhah€ third and the final metric is maximum relative error
less important to the problem at hand. The important metric(RE). MRE represents a measure of how large the maximum
the ability to predict video data traces not used in any manrRfor is relative to the actual time series value, and it is written
during the design of the predictors. Increasing the number &%
data points used in training did not provide any significant im- 1S(j) — S(j)|
provement. Reducing the number of data points used in training MRE = max ———>.
deteriorated the final prediction results. 1ST<Ns 15(7)]

As seen from Table I, the MBR of the video data traces con-
sidered varies from 0.1 Mb/s (Silence of the lambs) to 0.8 Mbfs  Single-Step-Ahead Prediction of I-VOPs
(Jurassic Park 1). The ratio of peak frame size to mean frame - . , .
size varies from 4.4 (Jurassic Park I) to 21.4 (Silence of thel).Tralmng ffjmd Predictor Structurginthe first expe'nment,
lambs). Additional statistical parameters of the VOPs of tr%redmtlon of simply the next frame size for tiieVOPs is con-

video traces, such as the mean, auto covariance, and autocor?éﬁ?gre¢ . - . . .
he time-series comprising of the VOP sizes is split into four

tion, indicate similar, typical range variations. No single videq, ) . . . . .
’ P ge ge gn‘ferent time-series. The first time-series consistsl 6fOP

©)

appears to consistently reside at the extremes of these rangges. . . .
bp y 1Izes. The next three time-series consist of the tlite¢OP

None of these statistical parameters indicate that the trace . ) .

the Aladdin video is a representative sample of all video tracedres: The tme—sengs are extracteq on the basis _Of acommon
However, the values of the MBR and the peak/mean ratio of thnedex' Four different indices are defined as follows:
Aladdin trace are close to the median of the corresponding pa- k(i) =M x (i—1) +1, mi(i) = k(i) + N
rameters for all the video traces considered. Apart for this obser- . . . .

vation, there is no evidence to suggest that the Aladdin trace had ma(i) =ma(i) + N, ms (1) = ma(i) + N (10)
any spatial or temporal characteristics that are representativ%ferek(z')’ m1 (i), ma(i), andms(i) are the four new indexes,
allthe video traces considered. One should pointoutthatthe ysgy; — 1. 2. ... I, whereL is the number of GOVs in the
of aggregate statistical parameters to characterize a highly non- Y

Stationary signal is ill-advised although these are some of thé'” [19], this prediction is considered multistep because of the presence of
’ Itiple frames in between twd-VOPSs. In the current research, such a pre-

. . . . . . m
metrics 'n W!deSpread use by the multimedia networking a'aﬁt,ltion would be considered single-step, whereas its extension to multiple-step
communication communities. would include prediction of severdVOPs.
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Fig. 2. Schematic representation of the neural network structure for SSP of I-VOPs.

video data tracel is the distance between tweVOPs. Simi- of all the other video streams considered. Off-line training of
larly, N is the distance between twoVOPSs. For the data tracesthis RMLP network from randomly initialized weights is con-
used in the currentresearch, the valuedlodnd N are 12 and 3, tinued for 175 000 training cycles or epochs, consuming approx-
respectively. The indexes defined above can be associated \itlately 100 hours of real-time on a personal computer that is
real-time as follows: about three years old. As indicated in later sections on MSP, in-
cremental off-line training of a network is significantly faster,
t =to + (Index—1) x A (11) reducing total time needed for learning to a couple of hours.

wheret, is the time the video stream starts, and Index represents he inputs to the neuro-predictor for prediction of the
any of thek (i), m1 (i), ma(i), orms(i). For convenience, can 1-VOP size are sizes of the previous thie®¥OPs, sizes of the

be assumed to be 0. The time difference between two conseR{gvious’-VOPs, difference between the sizes of two consecu-
tive VOPs is represented hy such thatA = 1/f, wheref is tive I-VOPs, second derivative of tHeVOP sizes, and moving
the number of VOPs per second. In the case of video data trag&grages of -VOP sizes. The difference between the sizes of
used in the current researchis equal to 25. For the remaindertWo consecutivé-VOPs is calculated as shown in the following:
of.this paper, pnly thg indgxgs will be defined with their associ- S1(i) = 1() — I(i —1). (13)
ation to real-time being similar to (11).

Each/-VOP is linked to the indek(4). Similarly, theP-VOP  The second derivative of theVOP sizes can be calculated by
that appears first in aGOVis linked ml(L) The_ other Mo §21(i) = 61(i) = 61(i—1) = 1(i) = 20(i — 1)+ 1(i—2) (14)
P-VOPsina GOV are linked to the remaining two indiees(7)
andms3(i), respectively. Therefore, four different time-seriewhere the second derivative takes values starting=as. The
can now be defined from the original time-series:6f), where simple moving average is defined as
j is the VOP index of a video trace, as follows:

. . . . I,(i) = — I(3). 15
16) =a(k(@),  Pi(i) = a(ma (i) T :Z+ v )
Po(i) =a(ms (i), Po(i) = w(ma(i) (12) Two different moving averages are included as ingw$:) and
where all the indexes are as previously defined. To00(%).

An RMLP network with 15 input nodes, seven hidden nodes, 2) Post-Processing and Testing of Predictor Outpu@nce
and one output node {&—7—1 network) is used. The predictorthe prediction is performed, the predicted output is rescaled back
architecture is determined by following the procedure outlingd its original range. Although the predicted data managed to
in Section IlI-C. The SSP is trained using the first 15890P capture the trends of the time series to a great extent, yet it had
sizes of the data trace Aladdin, while cross-validated on the faln almost constant offset from the original time-series. There-
lowing 500 7-VOP sizes of the same data trace. The designéate, a postprocessing step was included, whereby an estimate
predictor is tested on the remaining, unused segment of the ehthis offset is added to the predicted output; see Fig. 2 for a
tire Aladdin video stream, as well as on the entire video tracdssplay of this corrective term. The added offset is estimated by
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TABLE I E. Single-Step-Ahead Prediction of P-VOPs
PERFORMANCEMETRICS OF THESSPFOR THE[-VOP SZES i .
In the next experiment, the design of a neural network for

Trace RMSE (%) | MAE (in bytes) | MRE  predicting the sizes aP-VOPs in single-step-ahead is consid-
Aladdin 2.6 9379.3 13.2 ered. VOPs from the original stream are preprocessed and sep-
ARD Talk 0.9 6746.1 25 a_rated |r_1to several substreams (tlme—serles). Elements of_these
- time-series are components of an input vector to the predictor.
Jurassic Park I 08 9079.8 w7 Unlike the inputs used in th&-VOP case, thé’>-VOPs in this
Star Wars 1.5 4784.3 6.2 predictor are not divided into three time-series. Instead, a com-
Die Hard III 2.9 4636.9 10.5 posite time-series consisting of &+VOPs is considered.
Lecture Room 0.2 2687.1 0.9 The indexm(j) of this composite time-series is defined as
Silence of the Lambs 3.6 10802.0 104  follows: _
Skiing 2.0 4831.7 2.4 m(j) = {3 X (j+1)+1, ifj#1landmod(j—1,3)=0
’ 3xj+1, otherwise
17)
Plot of Lecture Foom 1-VOPS wherej = 1,2, ..., P, whereP is L x N, and whereN is
2000 j T f , T ' W the distance between twe-VOPs. In the context of the current
: : : f : research, the value af = 3. Based on the above index, the

following time-series is defined in terms of the original time-
seriesz(j) as

1900

P(j) = x(m(j)) (18)

where all indexes are as previously defined. As in the case of
SSP of the/-VOPs, thel (:) time series is also used in this ex-
periment.

While experimenting with various inputs for SSP bVOP
sizes, it is observed that involving the first difference between
: 5 | the sizes of VOPs in the prediction scheme provided the neural

|
|
|

Bytes

1600 -

1500+ -

B network with a sense to judge the direction of the impending

: : . . . ‘ change of the size of VOP in the next time step. This led to con-
“Bhoo a0 w200 w00 gf"o‘es ;o s a0 0 w0 400 siderable improvement in prediction accuracy, but in the case

- of P-VOPs, it is not sufficient to include the difference be-

Fig. 3. Single-step-ahead predicted size$-0OPs of Lecture Room.  tween consecutiv€-VOP sizes. Including differences between

consecutiveP-VOPs andl-VOPs led to even more improved
] ) ] performance. A composite time-series comprising of afily

observing the history of differences between the actual and pigyq p-vOP sizes is created for each video data trace. In con-

dicted values. The new prediction becomes structing this time-seried3-VOP sizes are neglected. The fol-

. lowing index!(p) is defined as

(I() = L.(j1i - 1)) (p)=3x(p-1)+1 (19)

(16) wherep=1,2,..., M,andwhereM is L x (N +1). Based
on the above index, the following time-series is defined in terms
of the original time-series(j) as

—_—l

i

1

f(i|i—1):f*(z'|i—1)+(i_2)

||
N

J

wherel(i|i — 1) is the predicted size df-VOPs at step after
the offset error correctior, (i | 7 — 1) is the actual output from
the neural network, and(y) is the actual size of -VOPs at 6P(p) = 6x(I(p)) = x(I(p)) — z(I(p — 1)) (20)
stepj. _ _ _

Fig. 2 depicts the architectural details and inputs used in tjif1ere all indexes are as previously defined. The parameters
SSP. The term SF in the figure is the scaling factor used 4§’ — 1), 6P(p — 2), 6P(p — 3), andé P(p — 4) represent

rescale the output, whereas(i) represents the error betweerihe difference between the sizes of consecuthend P-VOPs
the predicted/-VOP size,f*(z' i — 1), and the actual-VOP of the new series extracted from the original VOP size series.

sizeI(i)fori =1, 2, ..., L, whereL is the number of GOVs 8P(p) can be represented visually by the following series:
in the video data trace. I...P...P...T P
Following the inclusion of this correction term, tHeVOP —_— =

SSP is tested using all of the complete video traces considered. 6P(p—4)  8P(p—1) P(j|j-1)

Table Il summarizes the performance metrics of the proposedAn FMLP of size1l — 10 — 1 is used for this predictor,

1-VOP predictor for all the complete video traces tested. Fig.@8though an RMLP of similar size produced almost similar
shows a portion of the time-series depicting the best predictigsults. The similarity in the performance of the two architec-
range. tures prompted the use of the simpler predictor, which is the
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TABLE 11l 800 : , _ Plotoftecture Room P-VOPs
PERFORMANCEMETRICS OF THESSPFOR THE P-VOP SzES : _ :
Trace RMSE (%) | MAE (in bytes) | MRE o A
Aladdin 10.3 10104.0 12.6 sook 1 S ST YOO AU SO RO ORROE SO
ARD Talk 5.9 11696.0 6.4 ‘ ‘ ’ '
Jurassic Park I 4.0 13418.0 5.9 50 _
Star Wars 9.2 9313.3 12.9 aolh
Die Hard III 9.0 5742.3 6.7 H
Lecture Room 6.9 27134 5.7 300
Silence of the Lambs 11.0 8044.7 18.6 200
Skiing 6.2 4671.2 21.3
100

FMLP. Obtaining similar predictive results from both FMLP o s 2 s 1 s
and RMLP networks appears to be coincidental, as it is nc. Frame Sequence Number x10*
widely encountered in_practice. Ther.efore’ throughout thISFig.4. Single-step-ahead predicted size$e¥OPs of Lecture Room.
research, both classes of network architectures are tested when

designing a predictor. The specific predictor architecture is de-_l_h ority of i q | imil h
termined by following the procedure outlined in Section I1I-C. e mayority of Inputs used are more or less similar to those

Similar to the I-VOP case, the training set consists of th sed in the previou-VOP andP-VOP predictors. However,

first 1500 P-VOP sizes of the data trace Aladdin, whereas tae f_ollowing indqu(_r)_is defined that can be associated with
following 500 P-VOP sizes of the same data trace are usdfge time-series consisting of tie-VOPs:

for cross-validation. The designed predictor is tested on the 3r+1 .
L . T , if rodd
remaining, unused segment of the entire Aladdin video stream, _ 2 1)
as well as on the entire video traces of all the other video a(r) = 3r .
streams considered. Off-line training of this FMLP network 97 if r even
from randomly initialized weights is continued for 91200QN erer = 1,2, .... O, whereQis L x Z, with Z the number

training cycles or epochs, consuming.approximately 225 h B-VOPs between twd-VOPs. In this studyZ is 8. Using
real-time on a personal computer that is about three years ol e indexg(r), the following time-series is defined:

Sizes of previous thre®-VOPs P(j — 1), P(5 — 2), and
P(j — 3), sizes of the previous twb-VOPsI (i) and(: — 1), B(r) = x(q(r)) (22)
and7-VOP size differences(:) andéI(i — 1) are the inputs ) ] ]
used in theP-VOP SSP. Difference in sizes between the vOP¥here all indexes are as previously defined. As befBie,—1)

of the composite series defined by the indgx), sP(p — 1), "ePresents pagt-vop sizes.
§P(p —2), 6P(p — 3), andsP(p — 4) are also used as inputs Differences between the sizesiBfVOPs, not only from each

to the predictor. other but also from thd- and P-VOPs, provide information

The post-processing component of the designed predictor fBrthe neural network about the gradient/VOP sizes. The
predicting the sizes dP-VOPs is similar to that of the post-pro-0riginal time-series:(j) can be used to defined the following
cessing component af-VOPs. A summary of the results fortime series denoting the gradient of theVOPs as

SSP prediction of-VOPs is shown in Table Ill. Fig. 4 depicts §B(j) = 82(j) = 2(j) — a(j — 1) (23)

portions of the best performing segment of the time-series, re- ’ ’ ’

spectively. where the indey takes values starting from 2 up to the number
of total VOPs.

F. Single-Step-Ahead Prediction of B-VOPs A composite time-series consisting bfand P-VOPs is de-

In the third experiment an SSP is implemented for predictin§!0Ped as an input to the neural network. This series can be
the B-VOP sizes. An FMLP of sizd1 — 15 — 1 is used for 'epresented atPPPI ---. Encoding o.fB—VOPs is heavny de-
this purpose. The predictor architecture is determined by f@€ndent on thé- and P-VOPs. Thus, it makes logical sense to
lowing the procedure outlined in Section 11I-C. The predictofclude a series combining and P-VOP sizes to predict the
i trained and cross-validated using 20 000 and 1080g0P Siz€ 0f B-VOPs. From now on, VOPs belonging to this special
sizes of Aladdin, respectively. The designed predictor is test8@fies Will be referred asP-VOPs. The index(p), which was
on the remaining, unused segment of the entire Aladdin viggsfined earlier in the subse.ct|on_de.allng W|.th SSP of sizes of
stream, as well as on the entire video traces of all the other videaY©OPs can be used to define this time-series as follows:
streams considered. Offline training of this FMLP network from IP(p) = 2(I(p)). (24)
randomly initialized weights is continued for 65 000 training cy-
cles or epochs, consuming approximately 16 h of real-time oTae difference in the sizes betwed®-VOPs gives an in-
personal computer that is about three years old. dication of the gradient series. The consecutive differences
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TABLE IV Smoothing it removes the unwanted noise and focuses the anal-
PERFORMANCEMETRICS OF THESSPFOR THE 3-VOP S2Es ysis on the fundamental dynamics of the traffic and its long-term
Trace RMSE (%) | MAE (in bytes) | MRE depgndencie;. The othgr reason is that Whethgr our gpal is dy-
: namic bandwidth allocation or control of the media sending rate,
Aladdin 8.2 8333.8 15.0 . . -
ARD Talk for both cases, a long-term horizon is needed. By predicting the
RI? a 3.2 4688.2 33.0 moving average over some horizon, essentially, an estimate of
Jurassic Park I 2.2 8440.1 67.5  the average frame sizes over the specified averaging horizon will
Star Wars 3.5 4138.4 25.9 be available. Having estimates of this averaged time-series over
Die Hard III 4.0 3692.1 10.7 a longer horizon will enable better control and planning. In fact,
Lecture Room 28.3 891.3 47 fora very.short horizon, the cqntrpl effort will require tqo much
Silence of the Lambs 77 8 57118 188 computational overhegd. As it will bg demonstrated in the se-
— quel, the fortunate fact is that the predictor performance does not
Skiing 14.7 1686.1 29.1 degrade much with the length of the averaging horizon, which is

not surprising in view of the well-known multiscale properties
of network traffic time-series.
_The_ moving average tl_me—s_erléé(k)_ (m units of Bytes_) is
s s given in terms of the original time-serie$;) by the following

equation:

Plot of Lecture Room B-VOPs
400 T T T T T T

350

kp

XB=— > ) (25)

j=kp—w+1

wherew is the window sizep is the amount by which the
window is moved § < w), andz(y) is the VOP size of the
jth VOP in the video trace. The valueswfandp are selected
to be 25 and 12, respectively. The valuewf 25 corresponds
to a video stream segment of 1 s.
An FMLP of sizell — 22 — 1 is used for the prediction of
the moving average time-series of VOP sizes. The predictor ar-
: ; : ; chitecture is determined by following the procedure outlined in
B A eseencetumber 0% 2 & Section llI-C. The predictor is trained and cross-validated using
1500 and 500 data points from the moving average time-se-
Fig. 5. Single-step-ahead predicted size®eVOPs of Lecture Room.  fies of VOP sizes of Aladdin, respectively. The designed pre-
dictor is tested on the remaining, unused segment of the entire
8IP(l(p)) are also used as inputs that are computed from tﬁ‘fl?addm wdeo_stream, as well as on the ent_lre wd_eg traces .Of
: all the other video streams considered. Offline training of this
6P (p) series. FMLP network from randomly initialized weights is continued
The inputs used in th&-VOP SSP are sizes of the previou%r 2000 training cycles or epochs, consuming approximately
threeB-VOPs B(r —1), B(r —2), andB(r — 3)), B-VOP size : ’ .

. . . . . 1 h of real-time on a personal computer that is about three years
differences{B(j — 1), 6 B(j —2), andé B(j — 3)), sizes of the . The sianificantly reduced training fime for both the SSP
I-VOPs andP-VOP of the compositd >-VOP series [P (p), old. 1he signiticantly reduced fraining ime for botn the
IP(p — 1), IP(p — 2)), and difference in sizes between thé&nd MSP of the moving average series can be attrlbuted_ to the
-VOPs andP-VOP of the compositd P-VOP series {P(p), smoother nature _of the_5|gnals |_nvolved,_ as compared with the

frame-by-frame video signals. Fig. 6 depicts the neural network

§P(p — 1)).
The post-processing @-VOPSs follows along the same ”nesstructur'e used. . ) . )
The inputs used in this predictor are the previous three

as the post-processing schemesl/ofand P-VOPs. Table IV

tabulates the performance of tBeVOP prediction scheme for Moving averagesX (k—1), X (k—2), andX (k—3)), three lags
the tested video traces. Like and P-VOP prediction results, of difference between the sizes of two consecutive data points

the best performing time-series is shown in Fig. 5. of the moving average time-serieX (k) = X (k) — X (k —1),
three lags of second derivative of the moving average time-se-
H 2 — 2\ . _
G. Single-Step-Ahead Prediction of the Movingrage ries =X (k) = ).((k) 2X (k : .1) +.X(k 2)’ and two lags

: : . of the I-VOP size of the original time-serie§k — 1) and
Time-Series of VOP Sizes (k- 2)

In this experiment, instead of the original time-series, atime- The designed predictor employs an equivalent post-pro-
series that is a smoothed and down-sampled version of the odgssing as described earlier in the section IeMOP size
inal VOP size series is considered. There are a number of rpaediction. Fig. 7 shows the best prediction result. The values
sons for considering this experiment more useful from a praaf the three performance metrics used in this study are listed
tical point-of-view. The VOP size time-series is extremely noisin Table V.

1 1 1 1 1
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N
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Fig. 6. Schematic representation of the neural network structure for SSP of moving average time series of VOP sizes.

5500 Pk:t of movin'g averageI time seriz:s of framelNOP sizels for videlo data trac'e - ARD Talk TABLE V
: PERFORMANCEMETRICS OF THESSPOF SMOOTHED TIME-SERIES
oo . Trace RMSE (%) | MAE (in bytes) | MRE
4500 . Aladdin 2.5 7843.9 18.9
ARD Talk 0.8 6333.5 3.3
oo Jurassic Park I 1.0 7658.0 12.7
gasoo v 4 Star Wars 1.7 7799.8 17.0
Die Hard III 24 7841.1 18.7
2000 i Lecture Room 14.8 7517.2 10.1
2500 _ Silence of the Lambs 34 6084.0 2.8
Skiing 2.7 7888.8 21.3
2000 1
1500 ; ; ‘ ; ; that in the second prediction step and beyond, the network uses

0 40 s0 st g0 Sy o S0 %0 0 network forecasts rather than actual values of the time-series for
Fig. 7. Single-step-ahead prediction of moving average time series of vgpme of the |nputs. Thisis bec.ause the.actual tllme-serlets values
sizes for ARD Talk. are not yet available. The predictor architecture is determined by
following the procedure outlined in Section IlI-C. The predictor
, i is trained and cross-validated using 1500 and 500 data points

H. Multi-Step-Ahead Neuro-Predictors from the moving average time series of VOP sizes of Aladdin,

As mentioned in the previous subsection, time-series prediespectively. The designed predictor is tested on the remaining,
tion over longer horizons is highly desirable. To assess how famused segment of the entire Aladdin video stream, as well as on
in the future prediction is feasible, experiments are performéuk entire video traces of all the other video streams considered.
for MSP. The moving average time-series is considered, a@dfline training of this RMLP network for the two-step-ahead
the following experiments are performed: In the first experpredictor from randomly initialized weights is continued for
ment, two-steps-ahead are predicted, whereas in the second?&%00 training cycles or epochs, consuming approximately 2 h
periment, four-steps-ahead are predicted. These two predictiohseal-time on a personal computer that is about three years
correspondto 1 and 2 s horizons, respectively. The algorithm ddd. The same neuro-predictor is used for four-step-ahead pre-
veloped by the authors in [23] is used to train neural networkiéction. Incremental tuning of the two-step-ahead predictor with
for MSP; see Section IlI-C. the time-series comprising of the moving average of VOP sizes

An RMLP network having 11 inputs, 22 hidden nodes, anfor four-step-ahead prediction is accomplished in 2000 training
one output node is used to predict both two-step-ahead and fatyeles, consuming approximately 1.5 h of real-time on a per-
step-ahead experiments. All inputs are the same as describesbinal computer that is about three years old. A schematic of this
the SSP approach of the previous section. The only differencergdictor is shown in Fig. 8.
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Fig. 8. Schematic representation of the neural network structure for two-step-ahead prediction of moving average time series of VOP sizes.

Plot of Two-Step-ahead prediction for smoothed time series of ARD Talk

5500 T T T T T T T T I TABLE VI
: : — I\;ﬂ;IStsp—ahead Prediction PERFORMANCEMETRICS OF THETWO-STEP-AHEAD PREDICTION
\ 1 f N —— -
5000} : : : ;l % »‘ ‘|:- “. .':I ]
: P 1! Trace RMSE (%) | MAE (in bytes) | MRE
\ . 5
4500 R e ht . Aladdin 8.2 6891.5 18.3
ARD Talk 2.4 5229.3 2.7
4000 4
Jurassic Park I 3.8 8081.8 10.7
gssoo 1 Star Wars 4.9 6700.4 15.5
Die Hard III 7.8 6685.3 15.9
% Lecture Room 22.6 6463.1 9.0
2500 - Silence of the Lambs 9.3 4995.8 4.6
Skiing 7.9 6806.6 18.0
2000} - -
: : . : . : Plot of Four-Step-ahead prediction for smoothed time series of ARD Talk
1500 1 1 1 1 1 I 1 1 I 5500 T T T T T T T I  So—
480 490 500 510 520 530 540 550 560 570 580 : : r— Four-Step-ahead Prediction
Time (sec) . N — — Actual
Fig. 9. Two-step-ahead prediction errors for smoothed time series of AR 30001 ) "’\}'\’ ! 1

I

Talk.

)
i
! 1
i
]

4500

Fig. 9 shows the result of best-case scenario for two-ste
ahead prediction in comparison to the actual values of tt
moving average time-series. The performance metrics Shou £ ssel- -
in Table VI indicate deterioration in the performance of the"
two-step-ahead predictor compared with that of the one-ste a0
ahead predictor. Even though a deterioration is expected, it
not clear how significant the deterioration is compared witl 2500}
what is expected. Furthermore, it is not entirely obvious ho
significant this deterioration is for the applications intended t 2~
use the MSP. v ; ; ‘ , ‘ ‘ ‘ ;

The best case of four-step-ahead prediction is shown | %0 w0 s 50 50 W6 s w0 S50 w0
Fig. 10. Performance metrics for all the video traces are also
given in Table VII. RMSE of each smoothed time-seriegig. 10. Four-step-ahead prediction for smoothed time series of ARD Talk.
increases by about two times, indicating further deterioration.

It should be noted that by increasing the averaging time-series would have resulted in much better predictions than
smoothing window and performing an SSP on the resultinge MSP case, even if the horizons for both cases are taken to

4000 -
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TABLE VII TABLE VIII
PERFORMANCEMETRICS OF THEFOUR-STEP-AHEAD PREDICTION COMPARATIVE RMSE RESULTS OFSINGLE-STEP-AHEAD PREDICTION
Trace RMSE (%) | MAE (in bytes) | MRE Trace This Work | Yoo [19]
Aladdin 13.0 6186.9 15.1 Silence of the Lambs I 2.3 3.1
Jurassic Park I 8.0 8728.3 14.1 Total 6.8 6.9
. 6032.3 33.5
Star Wars 8.6 Star Wars I 14 2.4
Die Hard III 14.9 5980.7 14.2
P 23.9 16.7
Lecture Room 33.3 5758.5 8.6 Total 51 71
Silence of the Lambs | 19.0 4291.2 8.1 ota : :
Skiing 15.1 6102.2 16.1 Terminator I 22 3.1
P 13.3 15.0
. . - . 2 8.4
be the same. However, the intermediate predictions resulting Total 5
from a recursive MSP are needed in the case of a flow control Mr. Bean I 0.9 1.2
algorithm. This is particular true when using flow control P 10.9 9.8
algorithms based on model predictive control (MPC). Total 3.0 3.9
I. Comparison of Predictor Performance With the Published Simpsons I 18 2.6
Literature P 22.5 26.0
Following a literature survey, the work by Adas [18], Yoo Total 7.3 10.1
[19], and Chodorek and Chodorek [12] appear to have some
of the most comprehensive results for SSP lef P- and TABLE IX

B-VOPs for MPEG-1, and MPEG-2 streams, in the case of the coupararive RMSE ResULTS OF SNGLE-STER-AHEAD PREDICTION
third paper. The first two papers propose the use of adaptive FrROM VARIOUS PAPERS
linear predictors with some variations on how to comput=

. . Trace This Work | Yoo [19] | Adas [18] Chodorek
the predictor parameters. The former paper uses mostly 4 Chodorek [12]
Wiener—Hopf formulation and the NLMS algorithms, wherea . and hocore
. . . . Jurassic I 1.1 - 1.2 -
the latter utilizes some form of an adaptive step-size in tl Park I P 109 120
LMS predictor based on the detection of scene change. The| B 4‘0 i 4;3
paper proposed a predictor based on phase space analysis. ' i '
. . Total 3.0 - - -
data traces used by Adas and Yoo in their research are co S ; 1 " » 3
using the MPEG-1 standard, whereas Chodorek and Chodo W::S P 2?;9 16‘8 260 15; 3
utilized video traces coded with both MPEG-1 and MPEG- B 7'1 _' 7'7 7'1
The MPEG-1 data traces were obtained from [20]. To judc Total 5'1 - 4'6
the comparative performance of the predictors presented - : . :

. . L Terminator I 2.2 6.7 2.5 2.1
this research, the designed SSPs are applied to the same v P 133 157 136 84
traces used by Yoo and comparisons presented. Furtherm B 9'2 _' 10'6 9'4
a relatively small sample of complete video traces that a Total 5'2 64 _‘ 5'1

common to the work by Adas [18], Yoo [19], and Chodorex
and Chodorek [12] are compiled and compared with the current
work. No published literature utilizes MPEG-4 video traces forhile predicting the MPEG-1 data traces. In fact, for the pre-
prediction or performs true MSP. Therefore, the comparisondégtion of /-VOPs, our method outperformed Yoo's method for
limited to the SSP case with MPEG-1 coding. every single trace by a significant amount. The best improve-
Table VIII compares the RMSE of SSP developed in th@entis approximately 50%. For tii&VOP case, the results are
current research using MPEG-4 traces, with the predictgt@mparable with Yoo’s method somewhat outperforming our
from Yoo’s research paper. The table deals with fHeames, method. The same can be said regarding the comparison of the
P-frames, and with all combined frames for five differenpredictors presented in this study with those by Adas, as seen
MPEG-1 coded data traces lasting almost 30 min. Since YébTable IX. The results by Chodorek and Chodorek are compa-
reports only the RMSE for prediction of different data traceable with the ones presented in this study, with the exception
the comparison of the prediction schemes has been limitedofdhe P-VOP predictions, where better results are reported.
RMSE as the only performance metric. Additionally, Table IX
presents a comparison of a few complete video traces that ar
common to the aforementioned three papers. Predictions for th&@ he presented results indicate the success of the proposed ap-
I-, P-, andB-frames, as well as for the total traces, are givenproach in predicting VOP sizes (frame-by-frame) and averaged
Although the predictors designed in this research are trainé®P size for SSP and MSP. By looking at the time-series in-
using MPEG-4 data traces, they performed comparatively weblved, one can certainly observe the noise level in these time-

eComments on the Results
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series. Despite this noise level, RMSE errors of a few percentags]
points are obtained faf-VOPs. ForP-VOPs andB-VOPs, the
performance is somewhat worse but, in most cases, is clos
to or below 10%. Comparing the autocorrelation functions for
MPEG-4 video traces with similar figures reported in the litera-
ture by Adas and Yoo for MPEG-1 video traces indicates that thel®l
former traces have much more pronounced long-term dependen-
cies (LTDs). In fact for 20 lags, the MPEG-4 trace autocorrela- [6]
tion is above 0.9 and in many instances above 0.95, whereas the
corresponding values for MPEG-1 traces are significantly lower, 7]
in the range of 0.4 to 0.6. time-series with significant LTDs are
typically more difficult to predict.

The reported results compare favorably with Yoo's method (g
and especially fof-VOPs, even though the developed predic-
tors were trained on MPEG-4 traces, and then tested on Yoo’s
MPEG-1 traces. The same can be said regarding the compariso[g]
of the predictors presented in this study with those by Adas.

Another interesting result obtained is that the proposed pre-
dictor performs considerably well on the smoothed time-seried’”!
It obtains errors that are approximately similar to the case of
SSP of thel-VOPs but much better than those of tReVOPs
andB-VOPs. This is despite the fact that the smoothed time-se*
ries has smoothing horizon of 1 s and includesl/allP-, and
B-VOPs frame sizes in that horizon. The smoothed series i$12]
in fact, more desirable because it allows more effective control
strategies to be implemented in real-time. As expected, the MSP
results exhibited a deterioration as compared with the SSP ré3]
sults. The MSP is a fairly difficult problem, and novel methods
must be developed. Nevertheless, experience with MSP algo-
rithms used in control strategies indicates that even relatively in14]
accurate predictions could be effective in controller implemen-
tation because of the forgiving nature of feedback control [31]{15]

V. SUMMARY AND CONCLUSIONS (6]

In this study a neural network system is developed for pre-
dicting MPEG-coded video source traffic. This is an important,,
and widely researched topic because it can lead to more efficient
dynamic bandwidth management and, more recently, to better
control of real-time multimedia streams resulting in improved!18]
QoS. In the first experiment, SSPs are implemented, and they
are shown to achieve comparable and sometimes even better [£9]
sults than the results reported in the literature. This indicates
that the problem appears to have nonlinearities, and future rex)
search should perhaps deal with alternate nonlinear prediction
methods. In the second experiment, a smoothed and down-sam-
pled form of the video sequence time-series is used, and sd
results appear equally good. Thus, a longer horizon forecast cgrp)
be obtained with very little degradation in performance. In the
final experiment, an MSP method is developed for the smoothed
or averaged frame size series, but the results show some defgy)
rioration. More fundamental analysis and more novel methods
are needed for the MSP problem of time-series with significanb‘”
LTDs, as this has not been a very well researched topic.

REFERENCES (23]

[1] J.J. Bae and T. Suda, “Survey of traffic control schemes and protocols
in ATM networks,” Proc. IEEE vol. 79, pp. 170-189, Feb. 1991. [26]

[2] V. S. Frost and B. Melamed, “Traffic modeling for telecommunications
networks,”IEEE Commun. Magvol. 32, pp. 70-81, Mar. 1994.

2189

M. Krunz and H. Hughes, “A traffic model for MPEG-coded VBR
streams,” inProc. Joint Int. Conf. Meas. Modeling Comput. Syistay
1995, pp. 47-55.

] D.P.Heyman and T. V. Lakshman, “Source models for VBR broadcast-

video traffic,” TIEEE/ACM Trans. Networkingrol. 4, pp. 40-48, Feb.
1996.

P. Bocheck and S. F. Chang, “A content based video traffic model using
camera operations,” iRroc. IEEE Int. Conf. Image Procestausanne,
Switzerland, Sept. 1996, pp. 817-820.

M. Krunz and S. K. Tripathi, “On the characterization of VBR MPEG
streams,”ACM SIGMETRICS Performance Eval. Rewol. 25, pp.
192-202, June 1997.

M. Krunz and A. M. Makowski, “Modeling video traffic using
M/Gl/oo input processes: A compromise between Markovian and
LRD models,” IEEE J. Select. Areas Communication®l. 16, pp.
733-747, June 1998.

M. D. D. Amorim and O. C. M. B. Duarte, “A novel deterministic
traffic model based on a two-level analysis of MPEG video sources,” in
Proc. IEEE Global Telecommun. Congydney, Australia, Nov. 1998,
pp. 696-701.

P. Manzoni, P. Cremonesi, and G. Serazzi, “Efficient modeling of VBR
MPEG-1 coded video sourcedEEE/ACM Trans. Networkingvol. 7,

pp. 387-397, June 1999.

N. D. Doulamis, A. D. Doulamis, G. E. Konstantoulakis, and G. I.
Stassinopoulos, “Efficient modeling of VBR MPEG-1 coded video
sources,”|[EEE Trans. Circuits Syst. Video Technolol. 10, pp.
93-112, Feb. 2000.

A. M. Dawood and M. Ghanbari, “Content-based MPEG video traffic
modeling,” IEEE/ACM Trans. Multimediavol. 1, pp. 77-87, Mar.
1999.

A. Chodorek and R. R. Chodorek, “An MPEG-2 video traffic prediction
based on phase space analysis and its application to on-line dynamic
bandwidth allocation,” irProc. 2nd Eur. Conf. Universal Multiservice
Networks Apr. 8-10, 2002, pp. 44-55.

P. R. Chang and J. T. Hu, “Optimal nonlinear adaptive prediction and
modeling of MPEG video in ATM networks using pipelined recurrent
neural networks,”IEEE J. Selected Areas Communwol. 15, pp.
1087-1100, Aug. 1997.

A. D. Doulamis, N. D. Doulamis, and S. D. Kollias, “Nonlinear traffic
modeling of VBR MPEG-2 video sources,” iroc. |IEEE Int. Conf.
Multimedia Expa.New York, July—Aug. 2000, pp. 1318-1321.

——, “Recursive nonlinear models for on line traffic prediction of VBR
MPEG coded video sources,”ifroc. IEEE-INNS-ENNS Int. Joint Conf.
Neural NetworksComo, Italy, July 2000, pp. 114-119.

——, “An adaptable neural network model for recursive nonlinear traffic
prediction and modeling of MPEG video sourcd&EE Trans. Neural
Networks vol. 14, pp. 150-166, Jan. 2003.

A. M. Adas, “Supporting real time vbr using dynamic reservation based
on linear prediction,” Georgia Inst. Technol., Atlanta, GA, Report
GIT-CC-95/26, Aug. 1995.

——, “Using adaptive linear prediction to support real-time VBR video
under RCBR network service modelEEE/ACM Trans. Networking
vol. 6, pp. 635-644, Oct. 1998.

S. J. Yoo, “Efficient traffic prediction scheme for real-time VBR
MPEG video transmission over high-speed networkEEE Trans.
Broadcastingvol. 48, pp. 10-18, Mar. 2002.

O. Rose. (1995, Mar.) Index of /IMPEG. Univ. Wirzburg, Wirzburg,
Germany. [Online]. Available: http://wwwa3.informatik.uni-wuerzburg.
de/MPEG/.

] S. Haykin, Neural Networks—A Comprehensive Foundatisecond

ed. Upper Saddle River, NJ: Prentice-Hall, 1999.

A. G. Parlos, K. T. Chong, and A. F. Atiya, “Application of the recurrent
multilayer perceptron in modeling complex process dynamilisEE
Trans. Neural Networks, Special Issue on Dynamic Recurrent Neural
Networks: Theory and Applicationgol. 5, pp. 255-266, Mar. 1994.

A. G. Parlos, O. T. Rais, and A. F. Atiya, “Multi-step-ahead prediction
using dynamic recurrent neural networkigural Networksvol. 13, pp.
765-786, Sept. 2000.

A. G. Parlos, S. K. Menon, and A. F. Atiya, “An algorithmic approach
to adaptive state filtering using recurrent neural networsEE Trans.
Neural Networksvol. 12, pp. 1411-1432, Nov. 2001.

——, “An adaptive state filtering algorithm for systems with partially
known dynamics,”J. Dyn. Syst., Meas. Contwol. 124, no. 3, pp.
364-374, Sept. 2002.

R. M. Bharadwaj and A. G. Parlos, “Neural state filtering for adaptive
induction motor speed estimatioriylechanical Syst. Signal Process.
Mar. 2003, to be published.



2190

(27]

(28]

[29]

(30]

(31]

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 8, AUGUST 2003

P. Harihara, “Real-time implementation of a neural networks-basédnir F. Atiya (S'86-M'90-SM’'97) was born in Cairo, Egypt, in 1960. He
motor speed filter using a digital signal processor,” M.S. thesis, Texasceived the B.S. degree in 1982 from Cairo University and the M.S. and Ph.D.
A&M Univ., College Station, TX, Dec. 2002. degrees in 1986 and 1991 from the California Institute of Technology (Caltech),
F. H. P. Fitzek and M. Reisslein. (2001, Jan.) MPEG-4 and H.263asadena, all in electrical engineering.

video traces for network performance evaluation. [Online]. Available: From 1997 to 2001, he was a Visiting Associate at Caltech. Currently, he is an
http://www-tkn.ee.tu-berlin.de/research/trace/trace.html. Associate Professor with the Department of Computer Engineering, Cairo Uni-
—, “MPEG-4 and H.263 video traces for network performance evalrersity. He also held other positions in industry as well as in academia, such asin
uation,” Telecommunications Networks Group, Technical University ofexas A&M University, College Station, TX; QANTXX Corporation, Houston,

Berlin, Berlin, Germany, TKN Tech. Rep., Oct. 2000. TX; Tradelink, Chicago, IL; Simplex Risk Management, Hong Kong; and Coun-
J. Walter. (2001, Oct.) bttvgrab. [Online]. Available: http://www.garnitrywide, Los Angeles, CA. His research interests are in the areas of neural net-
ch/bttvgrabl/. works, learning theory, pattern recognition, Monte Carlo methods, time series

A. G. Parlos, S. Parthasarathy, and A. F. Atiya, “Neuro-predictivanalysis, and optimization theory. His most recent interests are the application

process control using on-line controller adaptatidBEE Trans. Contr. of learning theory and computational methods to finance.

Syst. Technalvol. 9, pp. 741-755, Sept. 2001. Dr. Atiya received the highly regarded Egyptian State Prize for Best Research
in Science and Engineering, in 1994. He also received the Young Investigator
Award from the International Neural Network Society in 1996. He has been
an Associate Editor for IEEE RANSACTIONS ON NEURAL NETWORKS since

Aninda Bhattacharya received the B.E. degree in mechanical engineering froqiggg He is a Guest Co-editor of the special issue of IERENBACTIONS ON

South Gujarat University, Surat, India, in 1997 and the M.S. degree in mechafiz ga. NETWORKSON
ical engineering from Texas A&M University, i

S “Neural Networks in Financial Engineering.” He served
College Station, in 2002. He i, the organizing and program committees of several conferences, most recent

currently pursuing the Ph.D. degree with the Mechanical Engineering Depag-yhich was the Computational Finance CF2000, New York, and the IEEE

ment at Texas A&M University.

Conference on Computational Intelligence in Financial Engineering (CIFER-

He is a graduate research assistant with the Networked and Intelligent %03)’ Hong Kong, for which he was program co-chair.
chines Laboratory at Texas A&M. His research interests include control sys-
tems design, system identification, neural networks, communication networks,
and adaptive multimedia networks.

Alexander G. Parlos (S'81-M'87-SM’92) received the S.M. degree in me-
chanical engineering, the S.M. degree in nuclear engineering, and the Sc.D. de-
gree in automatic control and systems engineering, all from the Massachusetts
Institute of Technology (MIT), Cambridge, in 1985, 1985, and 1986, respec-
tively. He received the B.S. degree in nuclear engineering from Texas A&M
University, College Station, in 1983.

He has been on the faculty at Texas A&M University since 1987, where he is
currently an Associate Professor of mechanical engineering, with joint appoint-
ments in the Department of Nuclear Engineering and Department of Electrical
Engineering. His applied research interests include the development of methods
and algorithms for life-cycle health and performance management of various dy-
namic systems, with special emphasis to system condition assessment (or diag-
nosis), end-of-life prediction (or prognosis), and reconfigurable control. He has
been involved with the particular application of these concepts to electro-me-
chanical systems and, more recently, to computer networks. His theoretical re-
search interests involve the development of learning algorithms for recurrent
neural networks and their use for nonlinear estimation and control. He has been
involved with research and teaching in neural networks, multivariable control,
and system identification, and he has conducted extensive funded research in
these areas. His research has resulted in one U.S. patent, three pending U.S.
patents, and 18 invention disclosures. He has co-founded a high-tech start-up
company commercializing technology developed at Texas A&M. He has over
135 publications in journals and conferences.

Dr. Parlos has been serving as an associate editor of the IREESRCTIONS
ON NEURAL NETWORKSSsince 1994, and of théournal of Control, Automation,
and Systemsince 1999. He has served as a technical reviewer to numerous pro-
fessional journal and government organizations, and he has participated in tech-
nical, organizing, and program committees of various conferences. Dr. Parlos
is a Senior Member of AIAA, a member of ASME, ANS, and INNS, and is a
registered professional engineer in the State of Texas.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


