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Abstract—Predicting traffic generated by multimedia sources is
needed for effective dynamic bandwidth allocation and for multi-
media quality-of-service (QoS) control strategies implemented at
the network edges. The time-series representing frame or visual
object plane (VOP) sizes of an MPEG-coded stream is extremely
noisy, and it has very long-range time dependencies. This paper
provides an approach for developing MPEG-coded real-time video
traffic predictors for use in single-step (SS) and multistep (MS) pre-
diction horizons. The designed SS predictor consists of one recur-
rent network for -VOPs and two feedforward networks for -
and -VOPs, respectively. These are used for single-frame-ahead
prediction. A moving average of the frame or VOP sizes time-se-
ries is generated from the individual frame sizes and used for both
SS and MS prediction. The resulting MS predictor is based on re-
current networks, and it is used to perform two-step-ahead and
four-step-ahead prediction, corresponding to multistep prediction
horizons of 1 and 2 s, respectively. All of the predictors are designed
using a segment of a single MPEG-4 video stream, and they are
tested for accuracy on complete video streams with a variety of
quantization levels, coded with both MPEG-1 and MPEG-4. Com-
parisons with SSprediction results of MPEG-1 coded video traces
from the recent literature are presented. No similar results are
available for prediction of MPEG-4 coded video traces and for MS
prediction. These are considered unique contributions of this re-
search.

Index Terms—MPEG-coded source traffic, multi-step-ahead
prediction, neural networks, neuro-predictors.

I. INTRODUCTION

CURRENTLY, the motivation for predicting video source
traffic bit rates arises from at least two important consid-

erations in multimedia networks. These are dynamic bandwidth
allocation and quality-of-service (QoS) control of real-time
multimedia streams transported over networks that do not offer
service guarantees, e.g., best-effort networks, such as internet
protocol (IP) networks. It is quite possible that future net-
worked computing needs and applications may bring forward
additional circumstances in which source traffic prediction
becomes critical.

Efficient and fair utilization of available bandwidth is a topic
that has garnered much attention in the networking commu-
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nity. In order to adapt the allocated bandwidth among network
end-users dynamically, it is imperative to predict the traffic gen-
erated by end-users. Currently, multimedia is responsible for an
increasing fraction of traffic over networks and this trend is ex-
pected to continue. If algorithms for the prediction of traffic gen-
erated by multimedia sources are developed, then they could
significantly aid in the design of efficient dynamic bandwidth
allocation mechanisms.

There are many problems faced when transporting mul-
timedia streams, such as video or audio, in real-time over
networks that offer no service guarantees. The majority of
these problems originate from the delay-sensitive nature
of multimedia content. Irrespective of the method used to
transport media content over an IP network, there is a strict
timing sequence that must be used by the decoder during
playback. For acceptable playback experience, all relevant
packets must be available at the destination for assembly when
needed and in the correct sequence. An obvious, and simple,
solution to this problem is destination-side buffering and,
more recently, edge-caching. The tradeoff of this approach is
that the media content is not delivered to the destination in
real-time or even in near real-time. Even though many media
applications, such as streaming and on-demand video and
audio, are tolerant to such large delays in delivery, there are
numerous applications that require real-time or near real-time
media delivery, such as gaming, conferencing, telephony and
teleoperation applications. One of the problems encountered in
efforts to design and implement edge-based QoS control in IP
network for applications requiring real-time or near real-time
content delivery is the need to know the source traffic bit-rate
time-series; future values of this time-series are needed.

Most of the reported research in multimedia source traffic
prediction has dealt with the development of stochastic
source models. These models are tested by demonstrating that
histograms and correlation functions constructed from data
extracted after utilizing the models match well with the cor-
responding quantities derived from the raw video stream data.
The paper written by Bae and Suda [1] is a good survey of such
video models. The authors of [2]–[5] propose different kinds of
source video models based on neural networks, Markov chains,
and statistical techniques. An insight into different kinds of
autoregressive and Markovian models of video source traffic is
also provided by [6]–[8]. Several other papers [9]–[11] provide
comprehensive knowledge about the various approaches taken
by researchers to model video source traffic. Chodorek and
Chodorek [12] develop a linear predictor of the MPEG video
traffic based on partitioning of the phase space into subregions.

While there is a deluge of research papers that deal with de-
velopment of statistical and stochastic models, less work has
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been done in the development of predictive models that can
capture the inherent nonstationarities and nonlinearities associ-
ated with MPEG-coded real-time video streams and that can be
used in real time. Chang and Hu [13] investigate the application
of a pipelined recurrent neural network (PRNN) for the adap-
tive traffic prediction of MPEG video signals over ATM net-
works. Two research papers presented by Doulamiset al. [14]
and [15] investigate the application of neural networks for non-
linear traffic prediction of VBR MPEG-coded video sources. In
a very recent paper by Doulamiset al.[16], the authors propose
an adaptable neural-network architecture covering online and
offline traffic modeling. This paper has results obtained from ex-
periments performed on four sources encoded using MPEG-2.

Adas [17], [18] proposes an adaptive linear predictor for
video source traffic prediction. Both a Wiener–Hopf and a
normalized least mean square (NLMS) predictor are used and
compared for performance. Based on the original work of
Adas, Yoo [19] develops an adaptive traffic prediction scheme
for VBR MPEG video sources that includes an analysis of the
effects of scene changes and traffic variations on the predic-
tion errors. Yoo selects an adaptive time domain prediction
technique using the LMS algorithm and considers multiplexed
video streams, exhibiting different statistical properties in
comparison to single video streams. The paper provides a
methodology to predict the sizes of the- and -frames. Even
though the -frames are predicted using a linear LMS scheme,
prediction errors for the -frames alone are not reported.
Rather, prediction errors for complete video traces are given.
Yoo motivates the reported research on the need for a dynamic
resource allocation method in multimedia networks.

The works of both Adas and Yoo consider ath-order, linear
single-step predictor (SSP). The coefficients are adapted online.
The research papers by Adas [18], Doulamiset al. [14]–[16],
Chodorek and Chodorek [12], Chang and Hu [13], and Yoo
[19] are the most relevant to the current research. The work
by Adas [18], Yoo [19], and Chodorek and Chodorek [12] rep-
resent some of the most comprehensive information about the
achieved SSP errors, while utilizing video traces that can be
obtained from a public archive [20]. As a result, SSP compar-
isons can be presented with respect to any of these publica-
tions. Adas also reports SS predictions for time-series com-
prised of group of pictures (GOPs) or group of video object
planes (GOVs) [18]. These schemes are still considered SSPs
and not multi-step-ahead predictors (MSP)s because only the
next (or one-step-ahead) prediction of a variable, in this case
the GOP (or GOV), is estimated. In addition to the lack of MSP
results in the literature, no predictors for MPEG-4 video traces
have been reported thus far.

In the current paper, a method is presented for designing SSPs
and MSPs for estimating video source traffic levels within a fi-
nite future horizon. The intended use of these predictors is on-
line and in real time. Past measured or predicted source level in-
formation is utilized as inputs in designing the predictors. Such
predictors must be equally useful irrespective of the

1) video quality generated, i.e., the quantization level;
2) nature of video content, i.e., low- action versus high-ac-

tion video;
3) specific encoding scheme used by the encoder.

Toward the end, the present paper makes the following contri-
butions:

• development of SSPs for estimating MPEG-coded video
source traffic time-series;

• development of MSPs for recursively estimating MPEG-
coded video source traffic time-series within a finite future
horizon;

• demonstration of the ability of the developed predictors
to perform equally well on video sequences encoded with
varying quantization levels and differing MPEG encoding
schemes.

The paper is organized into six sections. In Section II, a brief
overview of MPEG coding is presented. Section III summarizes
the architectural details and the learning algorithms used in de-
veloping the neuro-predictors. Section IV presents the imple-
mentation results of this study and discusses the relevant out-
comes. Comparisons with published results from the literature
are also reported in this section. In the final section, a summary
and some conclusions from this study are presented.

II. MPEG VIDEO CODING

MPEG standards define the guidelines for the vast array of
encoders that generate a compliant bit stream from videos and
motion pictures and the methods used by decoders to interpret
them. The point to be noted is that MPEG does not specify
guidelines on how to create an encoder. This implies that MPEG
does not impose any restrictions on technologies that are used
in the creation of encoders or decoders (also known as codecs).

In MPEG-1, the term sequence of pictures represents a com-
plete video clip. The next relevant definition is that of GOPs. An
MPEG-1 bit stream consists of a repeating GOP structure. The
GOP consists of pictures coded in three different ways and ar-
ranged in a repetitive structure. The next unit down the hierarchy
is frames. Frames are the basic building blocks of any MPEG-1
stream.Macroblocksare the units that make up each frame. A
macroblock contains all the information required for an area of
picture representing 1616 luminance pixels.

There are basically three types of frames in MPEG-1 bit-
stream.

• Intraframes (-frames): An intraframe or -frame is a
frame that is encoded using only information from within
that frame. It is a frame that is encoded spatially with no
information from any other frame.

• Nonintra frames ( -frames and -frames): Nonintra
frames use information from outside the frame, i.e., from
the frames that have already been encoded. In nonintra
frames, motion-compensated information is used for
a macroblock. This results in fewer data than directly
coding the macroblock. There are two types of nonintra
frames—predicted frames (-frames)and bidirectional
frames ( -frames). The -frame is typically used as a
reference for creating the and frames. To encode a

-frame, each macroblock in the-frame will search
for a matching macroblock in the encoded-frame.
Residuals of the macroblocks must be considered if they
are not identical. Thus, -frames are predicted from the
-frames and other -frames. -frames are encoded by
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Fig. 1. GOP coding structure.

using the information from-frames as well as -frames.
This is known asbidirectional encoding.

A typical MPEG GOP can be represented by the se-
quence of frames , as well as

. The entire video clip com-
prises of this sequence of frames repeating itself. The sequence

is called a regular GOP sequence as
it can be characterized by two parameters—and .
represents the distance between two-frames, whereas
represents the distance between two-frames. In the case
shown above, , and . Although it is quite easy
to construct irregular GOPs, they are not used in real-time
multimedia streams. However, they are used in other applica-
tions like DVDs. -frames require both the preceding as well
as succeeding anchor files for decoding. This is the reason
that -frames are sent earlier than the-frames of a GOP.
For a playback sequence of , the
transmission sequence is . The arrows of Fig. 1
depict these frame dependencies.

The main objective for the formulation of MPEG-4 is en-
coding video and audio at very low rates. Another objective is
to increase error resilience to packet losses. The MPEG-4 ar-
chitecture has made it possible for the generation of many new
types of applications. Introduction of objects is one of the sig-
nificant contribution of this standard. Different parts of the final
scene can be coded and transmitted separately asvideo objects
andaudio objectsto be brought together by the decoder. Separa-
tion of objects allows interaction with the objects. This feature
is very useful in games and educational software.

Each of the objects in an MPEG-4 image is a visual object
plane (VOP). Therefore, each object in a scene is represented
by a series of VOPs in time. This is not true for static objects in
video images. The static objects can be represented by a single
VOP. A VOP contains texture and shape data associated with the
respective object. VOPs are analogous to frames in the earlier
versions of MPEG standards. VOPs (and frames) can be coded
using the discrete cosine transform (DCT) or DCT and motion
compensation techniques.

The next level of upper hierarchy in the MPEG-4 standard
is GOV. GOVs are similar to GOPs in earlier versions of the
MPEG standard. They provide points in the bitstream where the
VOPs are coded independently from each other. Video session
(VS) is the top video level of the MPEG-4 standard. It com-
prises of all video objects, irrespective of their nature of origin
in the scene. As defined in the earlier versions of the MPEG
standard, encoder syntax must support many coding possibil-
ities. The blocks of the images in an MPEG-4 stream can be
coded as either-, - or -VOPs.

III. N EURAL NETWORK PREDICTORS

A. Neural Network Architectures

Two neural network architectures are used in this research: a
feedforward multilayer perceptron (FMLP) and a recurrent mul-
tilayer perceptron (RMLP). An FMLP is simply the standard
feedforward neural network. An RMLP is a multilayer network
where each hidden layer possesses crosstalk connections. The
crosstalk serves to add memory to the network, making it suit-
able for modeling dynamic systems. Each of the processing el-
ements of an RMLP is governed by the following equations:

(1)

and

(2)

where represents the internal state variable of theth
node at the th layer for sample ; is the th node
output of the th layer for sample , and is the bias of
the node; is the weight associated with the link
between the th node of theth layer to the th node of the th
layer. Furthermore, represents the discrete time at which the
node and network outputs are computed, with the node index

, and layer index , and with the
for the input and output layers and being

linear. The function for the hidden-layer nodes is a
squashing function, and in this study, is used. The term

provides the bias for each node. The processing elements
of an FMLP are also governed by equations similar to (1) and
(2). However, in (1), the contribution of the first sum is not
included.

B. Formulation of the Neuro-Predictors

The two neural networks described above are used to con-
struct two types of predictors.

Single-Step-Ahead Predictors (SSPs):The value of the time-
series at the time step is predicted using time-series mea-
surements up time. In other words

(3)

where represents time-lagged values of the time-series,
outputs , or transformations of the time-series, inputs ,
up to time . That is

(4)

where and are the maximum number of lags in the outputs
and inputs, respectively.

Multistep-Ahead Predictors (MSPs):The value of the time-
series at the time step is predicted recursively, using time-
series measurements up time , where . TheMSP
equation is expressed as

(5)
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where

(6)

where the variables are as previously defined. If the inputs
for are not available, best estimates of these
quantities can be used instead.

In both of the aforementioned SSP and MSP formulations,
the functional can be approximated either by an FMLP or
an RMLP. This results in four combinations of neuro-predictors.

C. Training Algorithms for Neuro-Predictors

To train an FMLP network used in SSP, the standard back-
propagation (BP) algorithm is utilized (see Haykin [21]). For
training an RMLP network in the SSP, the algorithm developed
by the authors in [22] is used, whereas for training either an
FMLP or an RMLP network for MSP, the algorithm developed
by the authors in [23] is used. The latter method minimizes an
objective function that is presentative of the MSP nature of the
problem, rather than an SSP objective function error typically
found in many recurrent neural network learning algorithms.
This is a dynamic learning algorithm that takes into account
the propagation of any weight change throughout the prediction
horizon, as well as with the network output update iteration. The
error gradients for this algorithm are quite complex, and they are
not repeated here due to space limitations. These gradients have
been recently published in full (see [23]).

In addition to the specific training algorithms used, selection
of the stopping point during learning and network architecture
determination are two important aspects of neuro-predictor de-
sign. Throughout this study, procedures that are well known in
the neural network community are used in stopping the learning
and in network architecture selection [21]. Cross-validation is
used to determine the stopping point during learning. A segment
of the training set is set aside and not used during network pa-
rameter updates. Rather, network performance is tested on this
cross-validation segment of the training set.

D. Real-Time Implementation of Neuro-Predictors

The predictors proposed in this study are intended to work
online and in real time. Predictors based on neural networks,
and in fact on many other nonlinear estimation tools, are very
time consuming to design, i.e., train and validate. Nevertheless,
once training is complete, the predictor execution, which is also
called the recall phase, is quite fast, enabling its real-time im-
plementation. The recall phase of a neuro-predictor requires ex-
ecution of a few multiplication and additions per processing
element or node, depending on the size of the preceding net-
work layer, and execution of a function per node, imple-
mented as a look-up table. An additional advantage of such pre-
dictors, as opposed to the adaptive linear predictors proposed in
[18] and [19], is that online network weight adaptation is not
typically needed because of the good generalization achieved
during off-line training. The proposed predictors are adaptive,
but all parameter adaptation is performed offline, as opposed to
LMS-type predictors, which are continuously adapted. This re-
duces the impact of various convergence problems encountered

TABLE I
PEAK/MEAN AND MEAN BIT RATE (MBR) OF MPEG-4 TRACES

in the online implementation of adaptive predictors. Neverthe-
less, in recent studies, it has been demonstrated that online pa-
rameter adaptation of neuro-predictors can further improve their
predictive accuracy compared to neuro-predictors implemented
online with fixed parameters [24], [25].

In a recent study, a comprehensive computational complexity
analysis of FMLP and RMLP predictors has been performed,
demonstrating that real-time implementation of such predictors
is indeed feasible [26]. In addition, recently, such neuro-predic-
tors have been implemented on a fixed-point arithmetic digital
signal processor (DSP), and their real-time operation has been
experimentally verified at much higher sampling rate require-
ments than the video source traffic prediction application pre-
sented in this study [27]. In fact, real-time neuro-predictor op-
eration has been experimentally verified at a 1000-Hz sampling
rate, as opposed to the 25-Hz sampling rate of the current appli-
cation (25 frames/s).

IV. NEURO-PREDICTORIMPLEMENTATION RESULTS

A. Generation of Video Sequences Used

The video traces used are obtained from [28]. This Internet
site, which is maintained by the Telecommunication Networks
Group of the Technical University of Berlin, Berlin, Germany,
is an excellent repository of downloadable MPEG-4 and
video traces. A technical report available at the site provides
the details of the procedure used in generating the video traffic
traces [29]. The video was played from VHS tapes using an ordi-
nary video cassette recorder. Uncompressed YUV information
of each video was grabbed using the toolbttvgrab (version
0.15.10) [30] at a frame rate of 25 frames/s in the QCIF format.
The luminance resolution was 176144 picture elements (pels)
and 4 : 1 : 1chrominance subsampling at a color depth of 8 bits.
This information was stored on a disk. The stored YUV frame
sequences were used as input for both the MPEG-4 encoder
and the encoder. The encoding was not performed in
real-time. Mean bit rate (MBR) provides information about the
picture quality of the traces used. Table I provides MBRs of the
video data traces used in the current research.

Each of the considered video sequences has been coded
using three different quantization levels. Depending on the
level of quantization, encoded sequences have been categorized
into high, medium, and low quality. The following sequences
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were chosen for the current research work: Aladdin, ARD Talk,
Jurassic Park I, Star Wars, Die Hard III, Lecture Room, Silence
of the Lambs, and Skiing.

B. Video Sequence Used for Training

For all predictors designed in this study, only a segment of
the Aladdin video sequence is used for training and cross-val-
idation, i.e., out-of-sample testing, to determine the stopping
point for the training process. After fixing all of the network pa-
rameters, the developed predictors are tested on the remaining
segment of the Aladdin sequence and on all other complete
video sequences mentioned above. All time-series are scaled
by a single scaling factor so that they lie mostly in the range
from 0.5 to 0.5, making them suitable for processing by the
neural network. Some of the details of the video data traces
used in the current research, along with the segments used in
training and cross-validation, are as follows: The total number
of VOPs in each data trace is 89 998, the number of-VOPs in
each data trace is 7500, the number of-VOPs in each data
trace is 22 500, and the number of-VOPs in each data trace
is 59 998. The fraction of-VOPs used for training (1500) and
cross-validation (500) is , and the fraction
of -VOPs used for training (1500) and cross-validation (500)
is , whereas the fraction of -VOPs
used for training (20 000) and cross-validation (10 000) is

.
Looking at the final prediction results, it appears that the

training sets are sufficient to capture the structure underlying the
video data traces used in this research and some others reported
in the literature employing a different coding scheme. It is diffi-
cult to ascertain whether or not the self-similar behavior of the
data, if any, has been captured. In some sense, this is somewhat
less important to the problem at hand. The important metric is
the ability to predict video data traces not used in any manner
during the design of the predictors. Increasing the number of
data points used in training did not provide any significant im-
provement. Reducing the number of data points used in training
deteriorated the final prediction results.

As seen from Table I, the MBR of the video data traces con-
sidered varies from 0.1 Mb/s (Silence of the lambs) to 0.8 Mb/s
(Jurassic Park I). The ratio of peak frame size to mean frame
size varies from 4.4 (Jurassic Park I) to 21.4 (Silence of the
lambs). Additional statistical parameters of the VOPs of the
video traces, such as the mean, auto covariance, and autocorrela-
tion, indicate similar, typical range variations. No single video
appears to consistently reside at the extremes of these ranges.
None of these statistical parameters indicate that the trace of
the Aladdin video is a representative sample of all video traces.
However, the values of the MBR and the peak/mean ratio of the
Aladdin trace are close to the median of the corresponding pa-
rameters for all the video traces considered. Apart for this obser-
vation, there is no evidence to suggest that the Aladdin trace had
any spatial or temporal characteristics that are representative of
all the video traces considered. One should point out that the use
of aggregate statistical parameters to characterize a highly non-
stationary signal is ill-advised, although these are some of the
metrics in widespread use by the multimedia networking and
communication communities.

The thrust of this research is to show that a generic predictor
can be obtained for use in the prediction of video source traffic
irrespective of the encoding parameters of the video data traces.
Attempting to identify very complex parameters that would in-
dicate whether a video trace is representative enough to be used
in training might eliminate the intent of this study. As witnessed
by the results of the sections to follow, the developed predic-
tors are generic to some extent, and they can be used to predict
the video source traffic for a wide range of MPEG-coded video
streams without any tuning.

C. Performance Metrics

Three types of errors were used as performance metric for
the prediction schemes developed in the current work. Let
and for denote the actual time-series and
the predicted time-series. The first error measure is the ratio be-
tween the sum of the square of the prediction error and the sum
of the square of the actual time-series values. This performance
metric is called relative mean square error (RMSE) and is rep-
resented by the following equation:

RMSE (7)

The second performance metric measures the maximum error
and is termed the maximum absolute error (MAE), as follows:

ME (8)

The third and the final metric is maximum relative error
(MRE). MRE represents a measure of how large the maximum
error is relative to the actual time series value, and it is written
as

MRE (9)

D. Single-Step-Ahead Prediction of I-VOPs

1) Training and Predictor Structure:In the first experiment,
prediction of simply the next frame size for the-VOPs is con-
sidered.1

The time-series comprising of the VOP sizes is split into four
different time-series. The first time-series consists of-VOP
sizes. The next three time-series consist of the three-VOP
sizes. The time-series are extracted on the basis of a common
index. Four different indices are defined as follows:

(10)

where , , , and are the four new indexes,
and , where is the number of GOVs in the

1In [19], this prediction is considered multistep because of the presence of
multiple frames in between twoI-VOPs. In the current research, such a pre-
diction would be considered single-step, whereas its extension to multiple-step
would include prediction of severalI-VOPs.
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Fig. 2. Schematic representation of the neural network structure for SSP of I-VOPs.

video data trace. is the distance between two-VOPs. Simi-
larly, is the distance between two-VOPs. For the data traces
used in the current research, the values ofand are 12 and 3,
respectively. The indexes defined above can be associated with
real-time as follows:

Index (11)

where is the time the video stream starts, and Index represents
any of the , , , or . For convenience, can
be assumed to be 0. The time difference between two consecu-
tive VOPs is represented by such that , where is
the number of VOPs per second. In the case of video data traces
used in the current research,is equal to 25. For the remainder
of this paper, only the indexes will be defined with their associ-
ation to real-time being similar to (11).

Each -VOP is linked to the index . Similarly, the -VOP
that appears first in a GOV is linked to . The other two

-VOPs in a GOV are linked to the remaining two indices
and , respectively. Therefore, four different time-series
can now be defined from the original time-series of , where

is the VOP index of a video trace, as follows:

(12)

where all the indexes are as previously defined.
An RMLP network with 15 input nodes, seven hidden nodes,

and one output node (a network) is used. The predictor
architecture is determined by following the procedure outlined
in Section III-C. The SSP is trained using the first 1500-VOP
sizes of the data trace Aladdin, while cross-validated on the fol-
lowing 500 -VOP sizes of the same data trace. The designed
predictor is tested on the remaining, unused segment of the en-
tire Aladdin video stream, as well as on the entire video traces

of all the other video streams considered. Off-line training of
this RMLP network from randomly initialized weights is con-
tinued for 175 000 training cycles or epochs, consuming approx-
imately 100 hours of real-time on a personal computer that is
about three years old. As indicated in later sections on MSP, in-
cremental off-line training of a network is significantly faster,
reducing total time needed for learning to a couple of hours.

The inputs to the neuro-predictor for prediction of theth
-VOP size are sizes of the previous three-VOPs, sizes of the

previous -VOPs, difference between the sizes of two consecu-
tive -VOPs, second derivative of the-VOP sizes, and moving
averages of -VOP sizes. The difference between the sizes of
two consecutive-VOPs is calculated as shown in the following:

(13)

The second derivative of the-VOP sizes can be calculated by

(14)

where the second derivative takes values starting at . The
simple moving average is defined as

(15)

Two different moving averages are included as inputs and
.

2) Post-Processing and Testing of Predictor Outputs:Once
the prediction is performed, the predicted output is rescaled back
in its original range. Although the predicted data managed to
capture the trends of the time series to a great extent, yet it had
an almost constant offset from the original time-series. There-
fore, a postprocessing step was included, whereby an estimate
of this offset is added to the predicted output; see Fig. 2 for a
display of this corrective term. The added offset is estimated by



BHATTACHARYA et al.: PREDICTION OF MPEG-CODED VIDEO SOURCE TRAFFIC 2183

TABLE II
PERFORMANCEMETRICS OF THESSPFOR THEI-VOP SIZES

Fig. 3. Single-step-ahead predicted sizes ofI-VOPs of Lecture Room.

observing the history of differences between the actual and pre-
dicted values. The new prediction becomes

(16)

where is the predicted size of-VOPs at step after
the offset error correction, is the actual output from
the neural network, and is the actual size of -VOPs at
step .

Fig. 2 depicts the architectural details and inputs used in this
SSP. The term SF in the figure is the scaling factor used to
rescale the output, whereas represents the error between
the predicted -VOP size, , and the actual -VOP
size for , where is the number of GOVs
in the video data trace.

Following the inclusion of this correction term, the-VOP
SSP is tested using all of the complete video traces considered.
Table II summarizes the performance metrics of the proposed
-VOP predictor for all the complete video traces tested. Fig. 3

shows a portion of the time-series depicting the best prediction
range.

E. Single-Step-Ahead Prediction of P-VOPs

In the next experiment, the design of a neural network for
predicting the sizes of -VOPs in single-step-ahead is consid-
ered. VOPs from the original stream are preprocessed and sep-
arated into several substreams (time-series). Elements of these
time-series are components of an input vector to the predictor.
Unlike the inputs used in the-VOP case, the -VOPs in this
predictor are not divided into three time-series. Instead, a com-
posite time-series consisting of all-VOPs is considered.

The index of this composite time-series is defined as
follows:

if and

otherwise
(17)

where , where is , and where is
the distance between two-VOPs. In the context of the current
research, the value of . Based on the above index, the
following time-series is defined in terms of the original time-
series as

(18)

where all indexes are as previously defined. As in the case of
SSP of the -VOPs, the time series is also used in this ex-
periment.

While experimenting with various inputs for SSP of-VOP
sizes, it is observed that involving the first difference between
the sizes of VOPs in the prediction scheme provided the neural
network with a sense to judge the direction of the impending
change of the size of VOP in the next time step. This led to con-
siderable improvement in prediction accuracy, but in the case
of -VOPs, it is not sufficient to include the difference be-
tween consecutive -VOP sizes. Including differences between
consecutive -VOPs and -VOPs led to even more improved
performance. A composite time-series comprising of only-
and -VOP sizes is created for each video data trace. In con-
structing this time-series, -VOP sizes are neglected. The fol-
lowing index is defined as

(19)

where , and where is . Based
on the above index, the following time-series is defined in terms
of the original time-series as

(20)

where all indexes are as previously defined. The parameters
, , , and represent

the difference between the sizes of consecutive- and -VOPs
of the new series extracted from the original VOP size series.

can be represented visually by the following series:

An FMLP of size is used for this predictor,
although an RMLP of similar size produced almost similar
results. The similarity in the performance of the two architec-
tures prompted the use of the simpler predictor, which is the
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TABLE III
PERFORMANCEMETRICS OF THESSPFOR THEP -VOP SIZES

FMLP. Obtaining similar predictive results from both FMLP
and RMLP networks appears to be coincidental, as it is not
widely encountered in practice. Therefore, throughout this
research, both classes of network architectures are tested when
designing a predictor. The specific predictor architecture is de-
termined by following the procedure outlined in Section III-C.
Similar to the -VOP case, the training set consists of the
first 1500 -VOP sizes of the data trace Aladdin, whereas the
following 500 -VOP sizes of the same data trace are used
for cross-validation. The designed predictor is tested on the
remaining, unused segment of the entire Aladdin video stream,
as well as on the entire video traces of all the other video
streams considered. Off-line training of this FMLP network
from randomly initialized weights is continued for 912 000
training cycles or epochs, consuming approximately 225 h of
real-time on a personal computer that is about three years old.

Sizes of previous three -VOPs , , and
, sizes of the previous two-VOPs and ,

and -VOP size differences and are the inputs
used in the -VOP SSP. Difference in sizes between the VOPs
of the composite series defined by the index , ,

, , and are also used as inputs
to the predictor.

The post-processing component of the designed predictor for
predicting the sizes of -VOPs is similar to that of the post-pro-
cessing component of-VOPs. A summary of the results for
SSP prediction of -VOPs is shown in Table III. Fig. 4 depicts
portions of the best performing segment of the time-series, re-
spectively.

F. Single-Step-Ahead Prediction of B-VOPs

In the third experiment an SSP is implemented for predicting
the -VOP sizes. An FMLP of size is used for
this purpose. The predictor architecture is determined by fol-
lowing the procedure outlined in Section III-C. The predictor
is trained and cross-validated using 20 000 and 10 000-VOP
sizes of Aladdin, respectively. The designed predictor is tested
on the remaining, unused segment of the entire Aladdin video
stream, as well as on the entire video traces of all the other video
streams considered. Offline training of this FMLP network from
randomly initialized weights is continued for 65 000 training cy-
cles or epochs, consuming approximately 16 h of real-time on a
personal computer that is about three years old.

Fig. 4. Single-step-ahead predicted sizes ofP -VOPs of Lecture Room.

The majority of inputs used are more or less similar to those
used in the previous-VOP and -VOP predictors. However,
the following index is defined that can be associated with
the time-series consisting of the-VOPs:

if odd

if even
(21)

where , where is , with the number
of -VOPs between two-VOPs. In this study, is 8. Using
the index , the following time-series is defined:

(22)

where all indexes are as previously defined. As before,
represents past -VOP sizes.

Differences between the sizes of-VOPs, not only from each
other but also from the- and -VOPs, provide information
to the neural network about the gradient of-VOP sizes. The
original time-series can be used to defined the following
time series denoting the gradient of the-VOPs as

(23)

where the index takes values starting from 2 up to the number
of total VOPs.

A composite time-series consisting of- and -VOPs is de-
veloped as an input to the neural network. This series can be
represented as . Encoding of -VOPs is heavily de-
pendent on the- and -VOPs. Thus, it makes logical sense to
include a series combining- and -VOP sizes to predict the
size of -VOPs. From now on, VOPs belonging to this special
series will be referred as -VOPs. The index , which was
defined earlier in the subsection dealing with SSP of sizes of

-VOPs can be used to define this time-series as follows:

IP (24)

The difference in the sizes between -VOPs gives an in-
dication of the gradient series. The consecutive differences
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TABLE IV
PERFORMANCEMETRICS OF THESSPFOR THEB-VOP SIZES

Fig. 5. Single-step-ahead predicted sizes ofB-VOPs of Lecture Room.

are also used as inputs that are computed from the
series.

The inputs used in the -VOP SSP are sizes of the previous
three -VOPs ( , , and ), -VOP size
differences ( , , and ), sizes of the
-VOPs and -VOP of the composite -VOP series ( ,

, ), and difference in sizes between the
-VOPs and -VOP of the composite -VOP series ( ,

).
The post-processing of-VOPs follows along the same lines

as the post-processing schemes of- and -VOPs. Table IV
tabulates the performance of the-VOP prediction scheme for
the tested video traces. Like- and -VOP prediction results,
the best performing time-series is shown in Fig. 5.

G. Single-Step-Ahead Prediction of the Moving Average
Time-Series of VOP Sizes

In this experiment, instead of the original time-series, a time-
series that is a smoothed and down-sampled version of the orig-
inal VOP size series is considered. There are a number of rea-
sons for considering this experiment more useful from a prac-
tical point-of-view. The VOP size time-series is extremely noisy.

Smoothing it removes the unwanted noise and focuses the anal-
ysis on the fundamental dynamics of the traffic and its long-term
dependencies. The other reason is that whether our goal is dy-
namic bandwidth allocation or control of the media sending rate,
for both cases, a long-term horizon is needed. By predicting the
moving average over some horizon, essentially, an estimate of
the average frame sizes over the specified averaging horizon will
be available. Having estimates of this averaged time-series over
a longer horizon will enable better control and planning. In fact,
for a very short horizon, the control effort will require too much
computational overhead. As it will be demonstrated in the se-
quel, the fortunate fact is that the predictor performance does not
degrade much with the length of the averaging horizon, which is
not surprising in view of the well-known multiscale properties
of network traffic time-series.

The moving average time-series (in units of Bytes) is
given in terms of the original time-series by the following
equation:

(25)

where is the window size, is the amount by which the
window is moved ( ), and is the VOP size of the
th VOP in the video trace. The values ofand are selected

to be 25 and 12, respectively. The value of corresponds
to a video stream segment of 1 s.

An FMLP of size is used for the prediction of
the moving average time-series of VOP sizes. The predictor ar-
chitecture is determined by following the procedure outlined in
Section III-C. The predictor is trained and cross-validated using
1500 and 500 data points from the moving average time-se-
ries of VOP sizes of Aladdin, respectively. The designed pre-
dictor is tested on the remaining, unused segment of the entire
Aladdin video stream, as well as on the entire video traces of
all the other video streams considered. Offline training of this
FMLP network from randomly initialized weights is continued
for 2000 training cycles or epochs, consuming approximately
1 h of real-time on a personal computer that is about three years
old. The significantly reduced training time for both the SSP
and MSP of the moving average series can be attributed to the
smoother nature of the signals involved, as compared with the
frame-by-frame video signals. Fig. 6 depicts the neural network
structure used.

The inputs used in this predictor are the previous three
moving averages ( , , and ), three lags
of difference between the sizes of two consecutive data points
of the moving average time-series ,
three lags of second derivative of the moving average time-se-
ries , and two lags
of the -VOP size of the original time-series and

.
The designed predictor employs an equivalent post-pro-

cessing as described earlier in the section on-VOP size
prediction. Fig. 7 shows the best prediction result. The values
of the three performance metrics used in this study are listed
in Table V.
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Fig. 6. Schematic representation of the neural network structure for SSP of moving average time series of VOP sizes.

Fig. 7. Single-step-ahead prediction of moving average time series of VOP
sizes for ARD Talk.

H. Multi-Step-Ahead Neuro-Predictors

As mentioned in the previous subsection, time-series predic-
tion over longer horizons is highly desirable. To assess how far
in the future prediction is feasible, experiments are performed
for MSP. The moving average time-series is considered, and
the following experiments are performed: In the first experi-
ment, two-steps-ahead are predicted, whereas in the second ex-
periment, four-steps-ahead are predicted. These two predictions
correspond to 1 and 2 s horizons, respectively. The algorithm de-
veloped by the authors in [23] is used to train neural networks
for MSP; see Section III-C.

An RMLP network having 11 inputs, 22 hidden nodes, and
one output node is used to predict both two-step-ahead and four-
step-ahead experiments. All inputs are the same as described in
the SSP approach of the previous section. The only difference is

TABLE V
PERFORMANCEMETRICS OF THESSPOF SMOOTHED TIME-SERIES

that in the second prediction step and beyond, the network uses
network forecasts rather than actual values of the time-series for
some of the inputs. This is because the actual time-series values
are not yet available. The predictor architecture is determined by
following the procedure outlined in Section III-C. The predictor
is trained and cross-validated using 1500 and 500 data points
from the moving average time series of VOP sizes of Aladdin,
respectively. The designed predictor is tested on the remaining,
unused segment of the entire Aladdin video stream, as well as on
the entire video traces of all the other video streams considered.
Offline training of this RMLP network for the two-step-ahead
predictor from randomly initialized weights is continued for
2500 training cycles or epochs, consuming approximately 2 h
of real-time on a personal computer that is about three years
old. The same neuro-predictor is used for four-step-ahead pre-
diction. Incremental tuning of the two-step-ahead predictor with
the time-series comprising of the moving average of VOP sizes
for four-step-ahead prediction is accomplished in 2000 training
cycles, consuming approximately 1.5 h of real-time on a per-
sonal computer that is about three years old. A schematic of this
predictor is shown in Fig. 8.
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Fig. 8. Schematic representation of the neural network structure for two-step-ahead prediction of moving average time series of VOP sizes.

Fig. 9. Two-step-ahead prediction errors for smoothed time series of ARD
Talk.

Fig. 9 shows the result of best-case scenario for two-step-
ahead prediction in comparison to the actual values of the
moving average time-series. The performance metrics shown
in Table VI indicate deterioration in the performance of the
two-step-ahead predictor compared with that of the one-step-
ahead predictor. Even though a deterioration is expected, it is
not clear how significant the deterioration is compared with
what is expected. Furthermore, it is not entirely obvious how
significant this deterioration is for the applications intended to
use the MSP.

The best case of four-step-ahead prediction is shown by
Fig. 10. Performance metrics for all the video traces are also
given in Table VII. RMSE of each smoothed time-series
increases by about two times, indicating further deterioration.

It should be noted that by increasing the averaging or
smoothing window and performing an SSP on the resulting

TABLE VI
PERFORMANCEMETRICS OF THETWO-STEP-AHEAD PREDICTION

Fig. 10. Four-step-ahead prediction for smoothed time series of ARD Talk.

time-series would have resulted in much better predictions than
the MSP case, even if the horizons for both cases are taken to
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TABLE VII
PERFORMANCEMETRICS OF THEFOUR-STEP-AHEAD PREDICTION

be the same. However, the intermediate predictions resulting
from a recursive MSP are needed in the case of a flow control
algorithm. This is particular true when using flow control
algorithms based on model predictive control (MPC).

I. Comparison of Predictor Performance With the Published
Literature

Following a literature survey, the work by Adas [18], Yoo
[19], and Chodorek and Chodorek [12] appear to have some
of the most comprehensive results for SSP of-, - and

-VOPs for MPEG-1, and MPEG-2 streams, in the case of the
third paper. The first two papers propose the use of adaptive
linear predictors with some variations on how to compute
the predictor parameters. The former paper uses mostly the
Wiener–Hopf formulation and the NLMS algorithms, whereas
the latter utilizes some form of an adaptive step-size in the
LMS predictor based on the detection of scene change. The last
paper proposed a predictor based on phase space analysis. The
data traces used by Adas and Yoo in their research are coded
using the MPEG-1 standard, whereas Chodorek and Chodorek
utilized video traces coded with both MPEG-1 and MPEG-2.
The MPEG-1 data traces were obtained from [20]. To judge
the comparative performance of the predictors presented in
this research, the designed SSPs are applied to the same video
traces used by Yoo and comparisons presented. Furthermore,
a relatively small sample of complete video traces that are
common to the work by Adas [18], Yoo [19], and Chodorek
and Chodorek [12] are compiled and compared with the current
work. No published literature utilizes MPEG-4 video traces for
prediction or performs true MSP. Therefore, the comparison is
limited to the SSP case with MPEG-1 coding.

Table VIII compares the RMSE of SSP developed in the
current research using MPEG-4 traces, with the predictors
from Yoo’s research paper. The table deals with the-frames,

-frames, and with all combined frames for five different
MPEG-1 coded data traces lasting almost 30 min. Since Yoo
reports only the RMSE for prediction of different data traces,
the comparison of the prediction schemes has been limited to
RMSE as the only performance metric. Additionally, Table IX
presents a comparison of a few complete video traces that are
common to the aforementioned three papers. Predictions for the
-, -, and -frames, as well as for the total traces, are given.
Although the predictors designed in this research are trained

using MPEG-4 data traces, they performed comparatively well

TABLE VIII
COMPARATIVE RMSE RESULTS OFSINGLE-STEP-AHEAD PREDICTION

TABLE IX
COMPARATIVE RMSE RESULTS OFSINGLE-STEP-AHEAD PREDICTION

FROM VARIOUS PAPERS

while predicting the MPEG-1 data traces. In fact, for the pre-
diction of -VOPs, our method outperformed Yoo’s method for
every single trace by a significant amount. The best improve-
ment is approximately 50%. For the-VOP case, the results are
comparable with Yoo’s method somewhat outperforming our
method. The same can be said regarding the comparison of the
predictors presented in this study with those by Adas, as seen
in Table IX. The results by Chodorek and Chodorek are compa-
rable with the ones presented in this study, with the exception
of the -VOP predictions, where better results are reported.

J. Comments on the Results

The presented results indicate the success of the proposed ap-
proach in predicting VOP sizes (frame-by-frame) and averaged
VOP size for SSP and MSP. By looking at the time-series in-
volved, one can certainly observe the noise level in these time-
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series. Despite this noise level, RMSE errors of a few percentage
points are obtained for-VOPs. For -VOPs and -VOPs, the
performance is somewhat worse but, in most cases, is close
to or below 10%. Comparing the autocorrelation functions for
MPEG-4 video traces with similar figures reported in the litera-
ture by Adas and Yoo for MPEG-1 video traces indicates that the
former traces have much more pronounced long-term dependen-
cies (LTDs). In fact for 20 lags, the MPEG-4 trace autocorrela-
tion is above 0.9 and in many instances above 0.95, whereas the
corresponding values for MPEG-1 traces are significantly lower,
in the range of 0.4 to 0.6. time-series with significant LTDs are
typically more difficult to predict.

The reported results compare favorably with Yoo’s method
and especially for -VOPs, even though the developed predic-
tors were trained on MPEG-4 traces, and then tested on Yoo’s
MPEG-1 traces. The same can be said regarding the comparison
of the predictors presented in this study with those by Adas.

Another interesting result obtained is that the proposed pre-
dictor performs considerably well on the smoothed time-series.
It obtains errors that are approximately similar to the case of
SSP of the -VOPs but much better than those of the-VOPs
and -VOPs. This is despite the fact that the smoothed time-se-
ries has smoothing horizon of 1 s and includes all-, -, and

-VOPs frame sizes in that horizon. The smoothed series is,
in fact, more desirable because it allows more effective control
strategies to be implemented in real-time. As expected, the MSP
results exhibited a deterioration as compared with the SSP re-
sults. The MSP is a fairly difficult problem, and novel methods
must be developed. Nevertheless, experience with MSP algo-
rithms used in control strategies indicates that even relatively in-
accurate predictions could be effective in controller implemen-
tation because of the forgiving nature of feedback control [31].

V. SUMMARY AND CONCLUSIONS

In this study a neural network system is developed for pre-
dicting MPEG-coded video source traffic. This is an important
and widely researched topic because it can lead to more efficient
dynamic bandwidth management and, more recently, to better
control of real-time multimedia streams resulting in improved
QoS. In the first experiment, SSPs are implemented, and they
are shown to achieve comparable and sometimes even better re-
sults than the results reported in the literature. This indicates
that the problem appears to have nonlinearities, and future re-
search should perhaps deal with alternate nonlinear prediction
methods. In the second experiment, a smoothed and down-sam-
pled form of the video sequence time-series is used, and SSP
results appear equally good. Thus, a longer horizon forecast can
be obtained with very little degradation in performance. In the
final experiment, an MSP method is developed for the smoothed
or averaged frame size series, but the results show some dete-
rioration. More fundamental analysis and more novel methods
are needed for the MSP problem of time-series with significant
LTDs, as this has not been a very well researched topic.
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