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Abstract
A new model to generate Asynchronous Transfer Mode (ATM) video

traffic is presented. The model, implemented on neural networks, is
capable of accurately adjusting the autocorrelation and probability
distribution functions of a given video traffic. This adjustment is
performed by capturing the projected conditioned histogram of the real
traffic, so that the neural model will be able to yield a simulated as a
function of an input white noise. Using neural networks we benefit from
their inherent capacities for working in real time, because of their
parallelism, and interpolating unknown functions. Results are presented
for a real MPEG video source.

1 Introduction

The aim of the future broadband integrated service digital network (B-ISDN),
based on asynchronous transfer mode (ATM), is supporting a wide variety of
multimedia services, with different statistical characteristics and quality of
service requirements (delay, losses). Among the most emerging services, we have
the video and image transmissions, which include many types of visual media, as
still image, video-conferencing, broadcast TV, HDTV, etc.
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The statistical multiplexing that ATM provides is specially appropriate to
transmit these traffics in real time efficiently, as long as this packet transfer mode
optimizes the use of the available bandwidth in the network. However, due to the
particular complexity of video statistical characteristics, some issues, as the
modelling and analysis of this traffic, are still open in the ambit of ATM
communications. Thus, finding an universal model for simulating packet video
traffic is a difficult task because the traffic flow depends not only on the used
encoding methods (JPEG, MPEG, etc.), but also on the nature (resolution,
motioned scenes, etc.) of the image that is being transmitted.

So, different solutions such as Markov chains [1] [2], autorregresive(AR,
ARMA), gamma distributed models, have been proposed to model video traffic.
The general objective of these models is to approximate the probability density
distribution, as well as the autocorrelation function of a real video traffic, since
the apparition of correlation between frames is an essential characteristic that
distinguishes VBR video from other types of traffics.

But most of the proposed models are suitable just for modelling simple video
scenes, with low complexity, or, otherwise, they focus their approximation on
one of those two statistical functions, assuming that the other one follows a
determined pattern (decreasing autocorrelations, gaussian probability
distributions). In this letter a new model for the generation of ATM traffic video
is presented.

The model, implemented on neural networks, is capable of accurately adjusting
the functions of autocorrelation and probability distribution of a given video
traffic. This adjustment is performed by capturing the projected conditioned
histogram of the real video traffic, so that the neural model will be able to yield a
simulated video signal at its output, just as a function of an input white noise.
Moreover, using neural networks we benefit from their inherent capacities for
working in real time, because of their parallelism, and interpolating unknown
functions. These interpolations avoid the need of storing the histogram and
substitute the searching in matrices of other histogram-based methods [3].

2 Theoretical Formulation

The final objective of a traffic emulator is to generate a random series s’[n], with
a physical meaning (e.g.: time between cells, number of generated cells in a
period of time), which imitates the behaviour of a real traffic stream s[n]. This
imitation can be performed for different time levels regarding the source activity
(cell level, burst level, call level). Our model carries out its approximation for the
burst level, taking into account the fixed period corresponding to a frame.
Modelling the source for the cell level is not so relevant, because the existence of
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shaping and buffers in the network deforms the traffic flow for short-term
considerations. So the real traffic stream s[n] indicates the number of cells that
each video frame contains.

In order to simulate this real traffic, the flow s’[n] must fit the curves of the
autocorrelation function Rs[n] as well as the probability distribution Fs(x) of s[n].
Higher order statistics can be neglected [4] as they are not representative of the
traffic for queuing solutions. The proposed emulator performs the adjust of both
functions by fitting the projected conditioned histogram of the real video traffic.
If we define:

[ ] [ ] [ ] [ ] [ ]{ }F x ob s n x s n d s n d s n d i s n d Ks ( ) Pr / ( ) , ( ) , ... ( ) , ..., ( )= < − − − −1 2

as the distribution function of s[n] conditioned to K previous samples determined
by an index d(i) (i∈ [0,K]) denoting the lag, this function could be empirically
obtained by calculating a K+1 dimensional histogram, consisting in a transition
matrix.

The estimation of this histogram requires to divide the signal s[n] in a number
N of discrete levels. The larger this number N is chosen, the more accurate the
histogram is, but more samples of the traffic are needed for a reliable and
representative histogram.

The obtained distribution Fs(x) is a continuous function ranging from 0 to 1.
Thus it can be regarded as an application of the K+1 dimensional space {s[n],s[n-
d(1)],... s[n-d(i)],... s[n-d(K)]} in the interval ξ∈  [0,1].

[ ] [ ] [ ] [ ]{ } [ ]F s n s n d s n d s n d Ks
Fs: , ( ) , ( ) ,... ( ) ,− − −  → ∈1 2 0 1ξ

Knowing that Fs(x) is a monotonously increasing function between 0 and 1, the
inverse function Fs

-1 can be calculated, so that we could obtain the current sample
s[n] as a function of the past traffic {s[n],s[n-d(1)],... s[n-d(i)],... s[n-d(K)]} and a
random noise ξ, uniformly distributed between 0 y 1.

[ ] [ ] [ ]{ } [ ]F s n d s n d s n d K s ns
Fs− − − −  →

−1 1 2
1

: , ( ) , ( ) ,... ( )ξ

An analytical expression for Fs
-1 is obviously not possible and consequently it

has to be achieved form the transition matrix of the histogram. This method
implies the need of searching in a multidimensional matrix. Therefore it is not
appropriate to work in real time.

To avoid this solution we propose the neural scheme depicted in figure 1. As
the learning of inverse functions is one of the inherent abilities of multilayer
perceptrons, we utilize a neural network to approximate Fs

-1. For this purpose a
set of learning patterns is selected from the conditioned histogram that has been
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previously estimated from the actual signal s[n]. The inputs for these patterns are
the delayed samples {s[n],s[n-d(1)],... s[n-d(i)],... s[n-d(K)]} and the noise ξ, and
the output the present sample s[n].

The final result, after the training phase has concluded, is that the network will
be able to yield a simulated signal s’[n] just as a function of a noise and some
past states of the same traffic s’[n]. This signal s’[n] will adjust the probability
distribution Fs(x) of s[n] with an accuracy that is determined by the number N of
levels in which the signal has been divided, as well as it will approximate the
autocorrelation function Rs[n] in those points corresponding to the considered
lags. This matching is specially interesting for video signals since video traffic
always exhibits a strong correlation.

4 Simulation and Numerical Results

We utilize our model to imitate MPEG codified video. At present, the MPEG
family of coding algorithms is widely used in broadband video communications.
The compression that MPEG performs reduces both the spatial and temporal
redundancy of the video stream. This is achieved by using three types of frame:

I frames, which only eliminate spatial redundancy, and P and B frames, which
also reduce temporal redundancy by motion compensation.
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Figure 1: Neural Generator. The input of the neural net is a white noise and its
previous outputs. This way, the probability distribution function Fs and

autocorrelation function Rs are fitted
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MPEG algorithm normally arranges these three types of frames in a fixed
periodic sequence, e.g. IBBPBBIBBPBBIBBPBB..., whose period (IBBPBB) is
called a group of picture GOP (Group of Blocks).

In this paper a MPEG-I video source is contemplated to evaluate the
performance of the proposed scheme. In particular the source s[n], indicating the
number of ATM cells per GOP, is the film “Star Wars” which lasts for about 97
minutes and contains 14511 gops of 12 frames. The histogram of s[n],
conditioned to the previous sample s[n-1], is estimated taking into consideration
30 levels. The neural network was designed with 2, 10 and 1 neurons in its input,
hidden and output layers, respectively. After selecting the learning patterns, the
training phase of the neural network is performed. A backpropagation algorithm
was used and the mean quadratic error, normalizing between 0 and 1, was lower
than 2x10-5. Once the learning is accomplished, the network generated a
sequence of 20000 samples of the simulated traffic s’[n] using as an input a white
noise, uniformly distributed between 0 and 1. The statistics of this traffic s’[n] are
compared with those of the actual traffic s[n] in figures 2, 3 and 4.

From these figures we can see that the simulated traffic s’[n] correctly fits the
curve of the probability density and distribution of s[n] while it approximates the
autocorrelation for the first lag, as the histogram was estimated considering the
previous sample s[n-1]. Figure 4 also shows that real traffic exhibits a strong
autocorrelation (Rs>0.25) for high values of the lags while the autocorrelation Rs’

of the simulated signal fastly decays as the lag increases. This long term
dependence of Rs is due to the existence of scenes within the film with a similar
activity level. This fractal characteristic of the traffic must not be neglected as it
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can determine the behaviour in a queue [5]. So, in further studies, a more
complete model of the traffic should contemplate the characterization of these
scene-changes.
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4 Conclusions

A neural model for the generation of ATM video traffic has been proposed. The
model uses a neural network to learn the conditioned histogram of a given traffic
in such a way that it is able to generate a traffic which fits the probability
distribution and some points of the autocorrelation function of the real signal.
Using neural networks we avoid the necessity of searching in transition matrices
of other histogram based models. Moreover, neural networks are adequate tools
for working in real time so they can be used to develop ATM traffic emulators.

On the other side, although the study has been focused on video traffic, because
of its correlation characteristics, the proposed model can simulate any random
series. Thus it could be extended to other types of ATM traffic sources.

Acknowledgement

This work has been partially supported by the Spanish Comisión
Interministerial de Ciencia y Tecnología (CICYT), Project No. TIC96-
0743-PB.

We also wish to express our gratitude to M. Garret (Bellcore) for
releasing the MPEG-I traces of the film Star Wars.

References

[1] B. Maglaris, D. Anastassious, P. Sen, G. Karlsson, and J. D. Roberts,
“Performance Models of Statistical Multiplexing In Packet Video
Communications”, IEEE Trans. on Communications, Vol. 36, No. 7, pp.
834-843, July 1988.

[2] N. Ohta, Packet Video, Artech House, 1994.

[3] J.L. Wu, Y.W. Chen, and K.C. Jiang, “Two Models for Variable Bit
Rate MPEG Sources”, IEICE Trans. on Communications, Vol. E78-B,
No. 5, pp. 773-745, May 1995.

[4] L.A. Kulkarni, and S.Q. Li, “Traffic modeling: matching the power
spectrum and distribution”, in Proceedings. of GLOBECOM’95, pp.
1701-1706, November 1995.



Applications Of Neural Networks To Telecommunications 3, pp. 104-111
Lawrence Erlbaum Associates , Publishers, New Jersey, 1995

8

[5] M- Conti, E. Gregori and A. Larson, “Study of the Impact of MPEG-1
Correlations on Video-Sources Statistical Multiplexing”, IEEE Journal
on Selected Areas in Communications, Vol. 14, No. 7, pp. 1455-1471,
September 1996.



Applications Of Neural Networks To Telecommunications 3, pp. 104-111
Lawrence Erlbaum Associates , Publishers, New Jersey, 1995

9

0 0.5 1 1.5 2

x 104

0

0.05

0.1

0.15

0.2

0.25
Probability density function (pdf)

cells/GOP

P
r
o
b
a
b
i
l
i
t
y

Real
Traffic

Simulated
Traffic



Applications Of Neural Networks To Telecommunications 3, pp. 104-111
Lawrence Erlbaum Associates , Publishers, New Jersey, 1995

10

0 10 20 30 40
-0.2

0

0.2

0.4

0.6

0.8

1
Autocorrelation Function

Lag in GOPs (k)

Rs(k)

Rs’(k)

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1
Probability Distribution Function (PDF)

Cells/GOP

P
r
o
b
a
b
i
l
i
t
y

Real
Traffic

Simulated
Traffic


