Volume Rendering

Shading and
Transfer Function
Shading Model with Phong

- Simple model used in volume rendering
- Three components
 - Diffuse
 - Specular
 - Ambient
- Uses four vectors
 - To source
 - To viewer
 - Normal
 - Perfect reflector
Material Properties

• 9 coefficients for each light source
 – I_{dr}, I_{dg}, I_{db}, I_{sr}, I_{sg}, I_{sb}, I_{ar}, I_{ag}, I_{ab}

• Material properties match light source properties
 – Nine absorption coefficients
 • k_{dr}, k_{dg}, k_{db}, k_{sr}, k_{sg}, k_{sb}, k_{ar}, k_{ag}, k_{ab}
 – Shininess coefficient α
Total Reflection Model

For each light source and each color component, the Phong model can be written as

\[I = k_d I_d \mathbf{l} \cdot \mathbf{n} + k_s I_s (\mathbf{v} \cdot \mathbf{r})^\alpha + k_a I_a \]

For each color component we add contributions from all sources.
The Halfway Vector

- \(\mathbf{h} \) is normalized vector halfway between \(\mathbf{l} \) and \(\mathbf{v} \)

\[
\mathbf{h} = \frac{(\mathbf{l} + \mathbf{v})}{|\mathbf{l} + \mathbf{v}|}
\]
Using the halfway angle

• Replace \((\mathbf{v} \cdot \mathbf{r})^\alpha\) by \((\mathbf{n} \cdot \mathbf{h})^\beta\)

• \(\beta\) is chosen to match shineness

• Note that halfway angle is half of angle between \(\mathbf{r}\) and \(\mathbf{v}\) if vectors are coplanar

• Resulting model is known as the modified Phong or Blinn lighting model
 – Specified in OpenGL standard
 – Generally used in volume rendering
How to compute normal?

• Not explicitly defined as in surface models
• Use gradient vector in volume data sets to replace normal
 – Compute gradient vector from volume densities
 – Need to compute for each sampling point
Gradient Vector

- The gradient vector \((g_x, g_y, g_z)\) at each sampling point \((x, y, z)\) usually computed by *central difference* operation

\[
g_x = \frac{f(x-1, y, z) - f(x + 1, y, z)}{2} \quad g_y = \frac{f(x, y - 1, z) - f(x, y + 1, z)}{2} \quad g_z = \frac{f(x, y, z - 1) - f(x, y, z + 1)}{2}
\]

- The gradient has to point from higher density to lower density, follow the above equation
Gradient Computation

- Each \(f() \) will generally need to interpolate
- An alternative way:
 - Compute gradient vector for each grid point
 - Then, generate a *gradient volume* in preprocessing, each voxel now stores the gradient vector
 - Interpolate gradient vector for each sampling point from *gradient volume*
Voxel Meaning

• Each voxel stores density
• What does the density represent?
 – Depends on particular applications
 – Real density, temperature, stress...
 – X-ray absorption of material (CT)
 – Magnetic property of material (MRI)
 – Artificial material tag (voxelization from surface models)
• How to visualize? Density → Color?
Transfer Function

• Give meaningful visual attributes to voxel density
 – Color
 – Transparency
• Use the visual attributes to visualize the volume data sets
• Such mapping from voxel density to color (transparency) is defined by transfer function
Define Transfer Function

- An example: for MRI head data set
 - Brain to pink and opaque
 - Skin and skull to grey and semi-transparent, so we can see through
Transfer Functions

- Such mapping need to interact with end users
- Generally, transfer function is an important topic in Human-Computer Interface (HCI) design
General Transfer Functions

- Mapping density to R,G,B,A
 - Red, green, blue, alpha (opacity)
- We will define it as mouse controlled curves
Advance Transfer Functions

• An example: map density to importance for particular applications

• Ivan Viola PhD Thesis: Importance-Driven Expressive Visualization