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Abstract
Data sets with a large numbers of nominal variables, including some with large

number of distinct values, are becoming increasingly common and need to be

explored. Unfortunately, most existing visual exploration tools are designed to
handle numeric variables only. When importing data sets with nominal values

into such visualization tools, most solutions to date are rather simplistic. Often,

techniques that map nominal values to numbers do not assign order or spacing
among the values in a manner that conveys semantic relationships. Moreover,

displays designed for nominal variables usually cannot handle high cardinality

variables well. This paper addresses the problem of how to display nominal
variables in general-purpose visual exploration tools designed for numeric

variables. Specifically, we investigate (1) how to assign order and spacing

among the nominal values, and (2) how to reduce the number of distinct

values to display. We propose a new technique, called the Distance-
Quantification-Classing (DQC) approach, to preprocess nominal variables before

being imported into a visual exploration tool. In the Distance Step, we identify

a set of independent dimensions that can be used to calculate the distance
between nominal values. In the Quantification Step, we use the independent

dimensions and the distance information to assign order and spacing among

the nominal values. In the Classing Step, we use results from the previous steps
to determine which values within the domain of a variable are similar to each

other and thus can be grouped together. Each step in the DQC approach can

be accomplished by a variety of techniques. We extended the XmdvTool

package to incorporate this approach. We evaluated our approach on several
data sets using a variety of measures.
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Keywords: Nominal data; visualization; dimension reduction; correspondence analysis;
quantification; clustering; classing

Introduction
Nominal (or categorical) variables are variables whose values do not have a
natural ordering or distance. High cardinality nominal variables (i.e., those
with a large number of distinct values) are common in real-world data sets.
Examples of high cardinality nominal variables include product codes and
species names.

Visualization provides an efficient and interactive way of exploring high
dimensional data.1 Unfortunately, nominal variables, especially high
cardinality nominal variables, pose a serious challenge for data visualiza-
tion tool developers. Difficulties arise due to several reasons.

First, visualization methods specifically designed for nominal data are
not as commonly used as those designed for numeric data.2 Possible
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reasons include:

� They tend to be more special-purpose. For example,
Mosaic Displays2 are designed for discovering associa-
tions, whereas Parallel Coordinates,3 which are for
numeric variables, can be used for exploring outliers,
clusters, and associations.

� Methods such as the Fourfold Display2 cannot handle
multiple nominal variables.

� Methods such as the Mosaic Display cannot handle
high cardinality variables well.

� Most methods are not readily available in common
visualization software.2

Second, most visualization software packages only
provide displays that are designed for numeric variables.
Reasons for this include:

� Data sets have traditionally contained only numeric
data.

� Numeric displays are more general-purpose.
� The inherent order and spacing among numeric values

makes it natural to convey notions such as magnitude
and similarity.

One way to display nominal variables using numeric
displays is to map the nominal values to numbers, that is,
assigning order and spacing to the nominal values.
Display methods such as Parallel Coordinates (Figure 1)
require both order and spacing among values. However,
care must be taken, as arbitrarily casting nominal values
into numeric displays may introduce artificial patterns and cause errors in the interpretation of the visualization.

Existing nominal-to-numeric mapping techniques do not
always assign both order and spacing to the values. For
example, the method reported in Ma and Hellerstein4

only assigns order to the nominal values, but not spacing.
As a motivating example of the need for order and

spacing, refer to Figures 1 and 2 which both display the
quality, color and size information of 6550 objects (from
a synthetic data set). Figure 1 gives an example of a
display where nominal values were assigned order and
spacing using our DQC approach, whereas Figure 2 shows
alphabetical ordering and uniform spacing of the nom-
inal values. Figure 1 reveals that blue and purple objects
have similar underlying distributions for quality and size.
Such information is difficult to extract from Figure 2.

This paper addresses the problem of how to display
data sets with a large number of nominal variables, some
with high cardinality, using visual exploration tools
designed for numeric variables. Specifically, we address
two sub-problems:

� How do we map nominal values to numbers such that
we effectively assign order and distance among the
values? Order is used to position values along an axis,
where the adjacency of values suggests similarity.
Distance is used to space the values along that axis.
The amount of spacing suggests the degree of similarity
among values, making it easier to spot clusters as well
as outliers. The assignment of order and distance must

Figure 1 Parallel coordinates using DQC to assign order and

spacing to nominal variables.

Figure 2 Parallel coordinates with arbitrary ordering and

uniform spacing.
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be done in such a way that the distance between two
values in nominal space is preserved in the numeric
space.

� When a variable has many values, how do we group
similar values together to reduce the number of
distinct values to display? Reducing the cardinality is
needed for displays such as Dimensional Stacking1 and
Trellis Displays,5 which are limited by the number of
values they can display.

We also want our solution to have the following
features:

� data-driven: able to work without explicit domain
knowledge.

� multivariate: using the relationship of a nominal
variable with several other variables to decide the
ordering, spacing and classing of the values.

� scalable: can work with a large number of variables with
high cardinality using limited memory.

� distance-preserving: the distance between two nominal
values in nominal space is preserved in numeric space.

� association-preserving: nominal variables that are highly
associated in nominal space are also highly correlated
in numeric space.

To our knowledge, no solution exists that has all these
features (this is further discussed in the next section).

To solve this problem, we propose that nominal
variables be pre-processed using a Distance-Quantifica-
tion-Classing (DQC) approach before being imported into
visual exploration tools designed for numeric variables.
In the Distance Step, we transform the data and search for
a set of independent dimensions that can be used to
calculate the distance between nominal values. This
distance is based on each value’s distribution across
several other nominal variables. The independence
among the resulting dimensions is needed to ensure that
the distance calculation is not biased by groups of highly
associated (i.e., correlated) variables. Analyzing one
variable using its relationship with several other variables
(instead of just one other variable) promotes stability in
the resulting order and spacing of values. These all will
help ensure that the distance between two nominal
values in nominal space is preserved in numeric space. In
the Quantification Step, we assign order and spacing
among the nominal values based on the distance
information. In the Classing Step, we determine which
values within a variable are similar to each other and thus
can be grouped together. Each of these three steps can be
accomplished by more than one technique, as we will
show in later section.

We incorporated an implementation of the DQC
approach into XmdvTool, a public-domain visualization
package developed at WPI.6 For the Distance Step, we
implemented and evaluated two alternatives: the well-
established technique of multiple correspondence analy-
sis (MCA)7 from Statistics and our own focused corre-
spondence analysis (FCA) which we describe in this

paper. FCA is our proposed alternative to MCA when
memory is limited. For the Quantification Step, we used a
modification of the Optimal Scaling techniques7 to also
make it work for data sets with perfectly associated
variables. For the Classing Step, we used a Hierarchical
Clustering algorithm8 so we can perform multivariate
classing (using information from several variables to guide
the classing).

To test our ideas, we pre-processed several data sets
using the DQC approach and used numeric displays such
as Parallel Coordinates to evaluate the usefulness of the
quantified versions of the nominal variables. We com-
pared MCA, FCA and arbitrary quantification using a
wide range of evaluation measures such as time, memory,
quality of quantification, quality of classing, and quality
of visual display.

The main contributions of this paper include:

� Distance–quantification–classing (DQC) approach: This is
a general pre-processing approach for displaying
nominal variables in visual exploration tools designed
for numeric variables. Since most visualization tools
are designed for numeric variables only, this approach
makes the exploration of nominal variables more
accessible to data analysts. DQC is also useful for pre-
processing nominal variables for a variety of data
analysis techniques, including association rules and
neural networks.

� Focused correspondence analysis (FCA): FCA is a viable
alternative to MCA when memory is limited. It
processes each nominal variable independently rather
than simultaneously

� Enhanced quantification: We improved upon the com-
mon practice of using only the coordinates from the
first principal axis from correspondence analysis (CA)
for quantification, and made it work with variables
with perfect association. This allows the analysis to be
automated.

� Multivariate quantification and classing: Our use of CA in
the Distance Step and Hierarchical Clustering in the
Classing Step allowed us to group similar nominal
values together based on information from several
other variables, not just one other variable. This makes
the classing more stable.

� Multifaceted evaluation: we evaluated the quality of the
results of our approach via user studies, statistical
analysis, and computational performance measures on
a wide range of data sets.

This paper extends the work presented in Rosario et al.9

by providing a more comprehensive analysis of related
literature, more detailed algorithm descriptions, more
extensive case studies, and an example using an addi-
tional visualization technique (scatter plots) to show the
generality of the technique. The remainder of the paper is
organized as follows. The following section describes
related work.

The next section gives an overview of the entire
approach, while the subsequent sections gives details
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for each step of the DQC approach. The penultimate
section presents empirical results. The last section
summarizes our results and lists possible future direc-
tions.

Related work

Visualizing nominal variables
Several approaches to visualizing nominal variables exist.
Sieve diagrams were designed to show relationships in a
two-way contingency table.2,10 The expected frequencies
for any two-way contingency table can be represented by
rectangles whose widths are proportional to the total
frequency in each column, and whose heights are
proportional to the total frequency in each row. The
observed frequency is shown by the number of squares in
each rectangle. For a data set with a small number of
nominal variables and values, sieve diagrams seem to be
good for presenting the information hidden in the data.
A large data set with many nominal variables and values
would be difficult to handle in this manner.

Similar to sieve diagrams, mosaic displays represent the
counts in the contingency table by tiles whose areas are
proportional to the observed cell frequency.2,11 It is
improved by the use of text and/or color to show
statistical measures such as standardized residuals.

A collection of related mosaics can be used to show the
associations and relations between nominal values of a
multiway contingency table. It can be extended to
display additional relationships among the data includ-
ing marginal or conditional relationships. In theory, the
mosaic matrix is capable of accommodating large
datasets with large numbers of nominal variables and
values. However, in reality it shares the shortcomings of
sieve diagrams – it is difficult to scale to visualize large
datasets with multiple nominal variables and values in a
limited screen space. Also it is only used to visualize the
contingency tables where a count is used to show how
many cases surveyed contain certain values of two
nominal variables.

CA Maps is a technique to visualize the associations
and relationships among nominal values.7 In CA maps,
all nominal variable values are mapped to numerical
values in a multiple dimension space (typically two or
three dimensions). The mapped numeric values in the
lower dimensions are used to position the nominal values
in a two or three dimensional scatterplot. The distances
in the scatterplots among the nominal values can be
computed and used to interpret the associations and
independencies among them. Correspondence analysis
maps are a good way to visualize the associations among
nominal values.

Fourfold displays are designed for the display of 2�2
(or 2�2� k) tables.2 It allows easy visual comparison of
the pattern of association between two dichotomous
variables across two or more populations. The frequency
in each cell of a fourfold table is presented by a quarter
circle whose area is proportional to the cell count. In the

2� 2� k case, the third dimension usually is population.
In this case, a series of fourfold displays are plotted to see
if the association between the first two variables are
homogeneous across populations. Fourfold displays are
specially designed to visualize data sets with only two
nominal variables and with only two nominal values for
each variable.

A Treemap is a space-filling technique for visualizing
hierarchical data.12,13 The drawing area is divided along
one axis (e.g., vertical) based on the populations of the
subtrees directly connected to the root node. Each of
these rectangles is then divided along the perpendicular
axis according to the subtrees beneath the corresponding
child node. This process is recursively applied until each
terminal node is represented by a rectangle. CatTree is an
improvement on Treemaps with a capability of creating a
hierarchy from categorical data and allowing direct,
interactive manipulation of that hierarchy.14 Once the
initial hierarchy is built, CatTree allows the user to
dynamically modify the order of the nodes in the
hierarchy.

All the above-mentioned techniques, and others such
as MANET,15 Table Lens16 and dimensional stacking,1

were designed and developed to explore the relationships
and associations among nominal variable values. They
employ different visualization approaches to uncover
relationships that may be hidden in the original data set.
They come from different research communities and may
or may not map the nominal values onto numeric values.
Unfortunately, these approaches are either special-pur-
pose, not readily available in common data analysis
software,2 or cannot handle high cardinality nominal
variables well.

Another research area relevant to our work is the study
of ordering techniques,11,17 which order nominal values
into an evenly-spaced sequence. Bertin promoted the
idea of a ‘reorderable matrix’ as a general technique for
data exploration and visualization to highlight interest-
ing patterns in a data set.17–19 A reorderable matrix brings
similar observations and variables together by permuta-
tion. Matrix reordering proves to be effective in some
cases; for example, Table Lens uses matrix reordering
algorithms in support of data visualization.20

Ma and Hellerstein4 proposed an algorithm for order-
ing categorical data by constructing clusters, sequencing
these clusters to minimize order conflicts, and ordering
the values within the clustery to eliminate pairwise order
conflicts. The process is equivalent to a Hamilton path
problem, which is NP-hard.

Beygelzimer et al.21 presented an algorithm that uses a
spectral method to avoid the inherent intractability of
the above-mentioned approach. They use a multilevel
approach to reduce the complexity. First, the original
graph is approximated by a sequence of increasingly
coarser graphs. Then the spectral algorithm is applied to
the coarsest instance to get an ordering. Finally, the
ordering is propagated back by interpolating through the
sequence of intermediate graphs. These two algorithms

Mapping nominal values to numbers Geraldine E Rosario et al

83

Information Visualization

 at OhioLink on September 20, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


provide an elegant result for displaying data sets with a
small number of nominal variables. The scalability to a
large dataset with multiple nominal variables was not
reported.

Among other ordering approaches, arbitrary ordering
(e.g., alphabetical order) and ordering based on the value
of another variable (e.g., time) have been studied for
enhancing visualizations. Unfortunately, arbitrary order-
ing often creates artificial patterns that can lead to wrong
conclusions. Furthermore, equal spacing that is often
assumed in ordering algorithms does not convey the
degree of similarity between nominal values.

Correspondence analysis
CA is a descriptive technique designed to analyze two-
way and multiway tables containing some measure of
correspondence between the rows and columns.7.CA
maps the nominal values onto a separate dimension
space, which is multidimensional in the sense that
several scale values are obtained for each nominal value.

CA was independently developed by several researchers
and given different names, such as optimal scaling,
reciprocal averaging, optimal scoring, appropriate scor-
ing, homogeneity analysis, dual scaling, and scalogram
analysis.22 In addition, CA has been proposed many
times in the literature because the analysis can be
expressed and interpreted in several apparently different
but equivalent ways. Tenenhaus and Young22 analyzed
these different methods and showed that they all lead to
the same equations for analyzing the data.

Several research efforts on CA and visualization have
provided ideas for our research. Friendly23 suggested
using the coordinates from the first CA principal axis to
order the values of nominal variables in mosaic displays
to reveal the pattern of association. Greenacre7 proposed
using the coordinates from the first CA principal axis as
input to create a classing tree. In this tree, the nominal
values are grouped together using reduction in inertia to
represent loss of information. Greenacre also suggested
the use of quantified versions of nominal variables as
input to statistical techniques that require numeric
variables, such as regression. The SPSS Categories package
uses CA to pre-process data for their Categorical Regres-
sion module and uses CA maps for visualizing nominal
variables.24 These uses of the coordinates of the first CA
principal axis seem to be due to the theory of Optimal
Scaling, that states that these coordinates provide an
optimal numeric representation of the nominal values.7

Unfortunately, when the nominal variable is perfectly
associated with another nominal variable, such coordi-
nates are not optimal, as we will show later.

Milanese et al.25 used CA and clustering to group
similar images. They created a hierarchical tree for fast
indexing into classes of images. This is similar to our
approach in that we also use CA as a data reduction
technique and use clustering to group similar nominal
values together.

For each nominal value, one can also calculate statistics
and use existing numeric data visualization methods to
display them. Unfortunately, when the variable has a
large number of values, the less frequently occurring
values are often ignored. This implies that there is a need
to group similar values together, which is the issue that
our ‘classing’ step addresses.

Classing
There are several approaches to grouping similar nominal
values together. One could use expert knowledge, but this
can be tedious for high cardinality nominal variables.
One could use information about the nominal variable
itself (e.g., based on the frequency of occurrence of the
values, the values can be grouped into popular, common
or rare values). Or, one could use the relationship of the
nominal variable with a target classification or regression
variable26 (e.g., group cities based on income level). But
using only one specific variable to guide the classing
(bivariate classing) may result in a classing that is
believable only within the context of that specific
variable (e.g., if we group cities based on income level
alone, we may have to regroup cities if we want to
visualize their relationship with land area). A better
classing approach is to use several variables to guide the
classing of a target variable (multivariate classing). One
multivariate classing approach applies clustering on a
data set,8 where the records represent the nominal values
and the variables contain summary information about
each nominal value. We use this clustering approach for
our Classing Step (see later). For example, to class similar
product codes together, we can create a data set with one
record per product code and have the variables contain
summarized information. Applying clustering on this
transformed data set will result in grouping similar
product codes together. Han and Kamber27 suggested
using heuristics to create concept hierarchies. Milanese
et al.25 proposed using CA and clustering to group similar
images together based on color, texture and shape.

Overview of proposed approach
Our proposed approach, the DQC approach, consists of
three steps (Figure 3). Each step can be accomplished by
more than one technique. In this section, we describe the
input, output and purpose of each step. In the succeeding
sections, we discuss possible techniques for each step.

Step 1: Distance Step – Given a data set with nominal
variables, one of which is the nominal variable to be
quantified and classed. The purpose of this step is to
create a table where the rows represent the values of the
nominal variable and the columns represent information
about the other variables in the data set. For this table to
be useful for the Quantification and Classing steps, we
should be able to calculate the distance between two
nominal values from this table.

To better explain this, consider a data set that contains
quality, color and size information for 6550 objects.
Quality has three possible values–good, ok, bad; color has
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six values–blue, green, orange, purple, red, white; and
size has ten values – ‘a’ to ‘j’. Suppose we want to analyze
color (which we shall call our target variable) using quality
and size (which we shall call our analysis variables). To
analyze color, we look at the distribution of its values
with respect to the analysis variables using a contingency
or counts table (Figure 4). From the counts table, we can
calculate row percentages (Figure 5) and get a glimpse of
which colors are similar to each other based on row
profiles; Figure 5 shows that blue and purple have similar
row profiles. From the row percentage table, we may be
tempted to calculate the distance between two rows using
a euclidean distance formula; however, there are two row
percentage tables for color (color by quality and color by
size). The technique to be used for this step must have a
way to combine all the columns of all tables for color,
extract new dimensions that are independent of each
other, and transform the counts table into a table that
uses the independent dimensions (Figure 6). These
independent dimensions would then be the basis of
distance calculations needed in the succeeding steps.
Using independent dimensions ensures that the distance

calculation is not biased by groups of highly associated
columns. This argument is similar to performing Princi-
pal Component Analysis (PCA) prior to Cluster Analysis
to ensure that the dimensions are independent of each
other as required by the euclidean distance calculations.8

Each row in the output table (Figure 6) can be thought of
as a point in p-dimensional space defined by the p
independent dimensions.

Often, the number of analysis variables is large,
although several may be highly associated with each
other. This suggests that the number of independent
dimensions to keep in the output table (Figure 6) can be
reduced while still maintaining a high accuracy for the
distance calculation. This Distance Step must also
determine how many of the independent dimensions to
keep. This step is the most important step as it dictates
the accuracy of the distance calculation needed in the
Quantification and Classing Steps. It is also the most
memory hungry and computationally intensive step as it
involves transformations of the original (large) data sets
and data reduction.

Figure 4 Counts table.

Figure 5 Row percentage table showing row profiles.

Figure 6 Transformed table with independent dimensions.

Figure 3 DQC approach.
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Step 2: Quantification Step – Given a table with rows
representing the values of the target variable and
columns representing independent dimensions extracted
from the analysis variables (Figure 6), this step uses the
distance information to assign order and spacing to the
values of the target variable. The output is a nominal-to-
numeric mapping (Figure 7). The goal of this step is to
create that mapping in a way that is distance-preserving
and association-preserving.

Step 3: Classing Step – This step uses the distance
information derived in the Distance Step to determine
which values of the target variable are similar to each
other and thus can be grouped together with minimal
loss of information. Ideally, the output is a hierarchical
classing tree showing which values can be grouped
together successively and the information lost with each
grouping (Figure 8). Note that the Quantification and
Classing steps may or may not be dependent on each
other, as suggested by the dashed line between them in
Figure 3.

The DQC approach has several advantages. First, it is
general-purpose. It provides a pre-processing approach
that is useful not only for visualization purposes but also
for other techniques that cannot handle high-cardinality
nominal variables (e.g., clustering algorithms, association
rules) or can only handle numeric variables. Second, it
provides a hierarchical classing tree that gives users the
flexibility to decide how many value-groups to use in
visual displays, depending on their specific analysis goals.
Third, it enables multivariate quantification and classing
(i.e., determining the distance between the values based

on their profiles across several other variables) which we
believe provides more robust results.

Distance step
A well-known family of techniques from Statistics
suitable for the Distance Step is Correspondence Analysis
(CA).7,28,29 Its simplest version, called Simple Correspon-
dence Analysis (SCA), is designed to analyze the relation-
ship of two nominal variables. SCA takes as input a two-
way counts table (Figure 4). The rows of the counts table
can be thought of as data points in p-dimensional
coordinate space defined by the p columns. As such,
there is a distance between two data points. CA
eliminates the dependencies among the columns by
extracting a reduced set of new columns that are
independent of each other, while still preserving all or
most of the information about the differences between
the rows. Figure 6 shows an example output from CA. CA
is similar to PCA except that CA is for nominal variables
while PCA is for numeric variables. Just like PCA, each
successive independent dimension (called a principal
axis) explains less and less of the overall information.

In its general form, CA can analyze n-way tables that
contain some measure of correspondence between the
rows and columns (not just counts). In this Distance Step,
one can use any version of CA, as long as it can analyze
the relationship of more than two variables and it can
provide as output the coordinates of the top independent
dimensions for each value of the target nominal variable
(as in Figure 6). In the following subsections, we describe
two versions of CA suitable for the Distance Step.

Definition
Let a population E of n elements be described by a set of k
categorical variables, A1, A2,y, Ak, each with p1, p2,y, pk

categories. The total number of categories is p ¼ S
k

j¼1
pj. The

ith element can be represented as a p-tuple

hxi11; xi12; . . . ; xi1p1
; xi21; xi22; . . . ; xi2p2

; . . . ; xik1; xik2; . . . ; xikpk
i

where

xijl ¼
1 if jth variable of ith element ¼ category l
0 otherwise

�

an n-element binary indicator vector,

Xjl¼ [x1jl,x2jl,y,xnjl]
l, is associated with category l of each

variable j. The pj vectors for variable j form a matrix

associated with variable Aj,

Xj ¼ ½Xj1;Xj2; . . . ;Xjpj
�

The matrix X for all elements is

X ¼ ½X1;X2; . . . ;Xk�

The scale value Zjl is a numeric value associated with

category l of variable j. The value of variable Xj for

element i is ~xxij ¼
Ppj

l¼1 xijlZil. This is the scaling value of

the category of variable j chosen by element i.Figure 8 Classing tree with information loss measure.

Figure 7 Nominal-to-numeric mapping.
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Problem formulation
Consider the (n� k) scaling value matrix X̃, CA can be
transformed into an optimization problem of maximiz-
ing the variance:22

Xn

i¼1

Xk

j¼1

ð~xxij 	 �xxÞ2

under the constraints that mean X̃¼ 0, variance X̃¼1,
and where �xx is the overall mean.

Since the variance of scale values for categories have
been maximized, the results of this algorithm would be
that the categories are separated as much as possible. This
is one potential solution to the problem of ordering
categorical values.

Multiple correspondence analysis
MCA extends SCA to analyze more than two nominal
variable.7,28,29 To perform MCA, simply create a Burt
Table (Figure 9) and use that as input to SCA. If a counts
table is a cross between two nominal variables, a Burt
Table is a cross of all variables by all variables. If V is the
total number of unique values across all variables, then
the size of the Burt Table is V by V.

The Burt Table structure allows MCA to simultaneously
analyze all variables. That is, for every target variable, it
can build row profiles using information from all other
variables. This simultaneous analysis is efficient in terms
of processing time because certain calculations can be
reused, though wasteful in memory. When the number of
nominal variables to analyze is large and some have high
cardinality, MCA could run out of memory, depending on
how it is implemented.

The coordinates of the first principal axis from MCA
follow an optimal scaling property.7 This means that such
coordinates represent a quantification of all nominal
values in all variables. Note, however, that this quanti-
fication is sub-optimal when the target variable has a
perfect 1-to-many or many-to-many association with
another variable, as we show in the later section.

Focused correspondence analysis
Due to the memory-intensive nature of MCA, we have
designed an alternative solution, which we call FCA,
aimed at processing a large number of nominal variables,
some possibly having high cardinality.

Unlike MCA that analyzes all variables simultaneously,
FCA analyzes one variable at a time, making FCA less
computationally efficient than MCA. The memory sav-
ings in FCA come from this key idea: instead of
comparing value profiles across all other nominal vari-
ables, just compare value profiles across the set of
nominal variables most associated (i.e., correlated) with
the target variable. For example, to analyze one nominal
variable (e.g., color) against its most associated variables,
say quality and size, we use a compressed Burt table such
as Figure 10 as input to SCA. This table is a concatenation
of counts tables or color*quality and color*size.

We now discuss why such a table would be a valid input
for SCA. Earlier in this section, we mentioned that the
basic version of SCA uses a counts table as input. In the
previous subsection, we indicated that we can perform
MCA by using a Burt Table as input to SCA. In general,
SCA can use as input any table that has the following
properties.30 (1) the table must use the same physical
units or measurements, and (2) the values in the table
must be non-negative. If the input table does not meet
these assumptions, the table must be transformed before
performing SCA. The table in Figure 10 follows these
properties.

Two pre-processing steps are needed for FCA: (1)
Measure the pairwise association between nominal vari-
ables, and (2) Determine the top k associated variables for
each nominal variable.

Measure the pairwise association between nominal varia-
bles Given the counts table of two nominal variables,
we can state how closely related the variables are with
each other using measures of nominal association.31 These
measures are analogous to measures of correlation
between numeric variables. Several measures of nominal
association exist. The choice depends on factors such as
the size and shape of the counts table and the presence of
low counts.31 For our purpose, we want a measure of
association that is valid for counts tables that may be
large, non-square and may contain low cell counts–all
properties of counts tables from high cardinality vari-
ables. We also want a measure of association that has a
bounded range of values, so it is easy to compare two
values. One such measure is the Uncertainty Coefficient
Asymmetric measure U(R|C).28 U(R|C) gives the proportion
of uncertainty in the row variable R that can be explained
by the column variable C. If U(R|C)¼ 1, the value of the
row variable can be known precisely given the value of
the column variable.Figure 9 Example MCA input table (Burt Table).

Figure 10 Example FCA input table (compressed Burt Table).
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Determine top k associated variables for each nominal
variable For now, we select some k greater than 2,
depending on the memory space available. Since there
may be variables that are only weakly associated with
other variables, we cannot use A threshold on the
measure of association chosen in the previous subsection.
By selecting k to be greater than 2, we ensure that we use
at least one analysis variable for each target variable.

In summary, FCA has its own strengths and weak-
nesses. With FCA, memory usage is reduced and, in fact,
controllable. Also, we empirically show in later section
that FCA provides better classing trees compared to MCA
for some data sets. FCA, however, needs a longer run time
compared to MCA. This is due to the one-at-a-time
analysis as well as the need for pre-processing. In the
context of visualization tools, intelligently mapping
nominal values to numbers is a pre-processing step that
can be run in batch mode. Hence, the run time may not
be as important compared to memory space in some
situations.

Reduce number of dimensions to keep The CA family of
techniques uses forms of decomposition (e.g. , Singular
Value Decomposition, Eigenvalue Analysis) to extract the
set of independent dimensions. By default, all forms of
CA will keep all independent dimensions calculated7

which, for high-dimensional high cardinality data sets,
require a lot of space. These independent dimensions are
ordered by diminishing importance. Part of the CA
output is the set of eigenvalues (principal inertia) that
indicate the importance of each independent dimension.
The first dimension, which is the most important
dimension, will have the highest eigenvalue. We plot
the eigenvalue by dimension number (called a Scree Plot)
and find the ‘elbow’, the point at which the change in
consecutive eigenvalues is small. We keep only the
dimensions up to the ‘elbow’. This is a common
technique used in Factor Analysis.28 This technique is
independent of the particular version of CA we use for
the Distance Step.

In summary, the MCA-based Distance Step algorithm is
as follows:

1. BurtTable(rawdataMatrix)-burtMatrix
2. SCA(burtMatrix)-coordMatrix, evaluesVector
3. ReduceNumberDim(coordMatrix, evaluesVector)-co-

ordMatrixSubset

while the FCA-based Distance Step algorithm is as
follows:

1. PairwiseAssociation(rawdataMatrix)-assocMatrix
2. Set k
3. FCATable (rawdataMatrix, k, assocMatrix)-fcaInput-

Matrix
4. SCA (fcaInputMatrix)-coordMatrix, evaluesVector
5. ReduceNumberDim (coordMatrix, evaluesVector)-

coordMatrixSubset

Quantification step
Quantification is the process of assigning order and
spacing to the nominal values. For this step, we want a
technique that can take as input the independent
dimensions from the Distance Step and produce a
nominal-to-numeric mapping for each nominal variable.

As mentioned in the second section, a popular
technique used for quantification is based on the theory
of Optimal Scaling.7 Based on Optimal Scaling, we can
use the coordinates from the first CA independent
dimension as the quantified version of the nominal
values. Unfortunately, when a nominal variable is
perfectly associated with another variable (e.g., one-to-
many association: one state has many zip codes, or many-
to-many association: specific products are only sold in
specific regions), we have found in our experiments that
this technique fails (see later).

Since we want our technique to work without the need
for domain knowledge, we want it to automatically
handle cases of perfect associations. Hence, we propose
an adjustment to the Optimal Scaling approach: If the
first n CA eigenvalues are 1.0, let scalei¼Sj¼ 1

n coordinatei,j,
where coordinatei,j, is the coordinate of the jth indepen-
dent dimension for row i. Otherwise set sca-
lei¼ coordinatei,1, (coordinate of the first independent
dimension). Scale is the term used in Optimal Scaling
for the quantified version of a nominal variable. In later
section, we show that this proposed adjustment gives
more effective results for cases with perfect association.

By using independent dimensions extracted via CA to
create the quantified versions of nominal values, we have
essentially defined the order and spacing of two nominal
values to be a function of the w2 distance between them.
w2 distance is the distance function used in CA.7 It is the
weighted Euclidean distance between a row profile and
the average (or expected) row profile. Put differently, the
quantified version of a nominal value depends on how
different its profile is from the average profile. This
implies that even if the nominal variable has an under-
lying order (i.e., even if it is actually a discretized numeric
variable), that order may not be recreated in the
quantified version. An example of this can be seen later
on in this paper.

An alternative to our modified optimal scaling is to use
an algorithm similar to that described in Ankerst et al.32

for rearranging dimensions for a visualization. We search
for an ordering of the rows of Figure 6 that minimizes the
sum of the distances between all pairs of adjacent rows.
This defines the order of the nominal values. The spacing
between values can be defined using the distance
between the row values. Our Optimal Scaling quantifica-
tion is faster than this algorithm because Optimal Scaling
directly uses output from CA at no extra cost.

Classing Step
Classing (or intra-dimension clustering) is the process of
finding which values within a nominal variable are
similar to each other and thus can be grouped together.
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For this step, we want a technique that can take as input a
table with rows representing the values of the target
variable and columns representing independent dimen-
sions extracted from the analysis variables, and produce a
hierarchical classing tree showing value groupings and
the amount of information lost with each grouping
(shown in Figure 8). One method for solving this is to
apply a hierarchical clustering algorithm on the CA
output table (Figure 6), where each value (row point) is
weighted by its counts.

Classing is a data reduction technique, thus it results in
a loss of information. In this step, we also want to show
the amount of information lost whenever two values are
grouped together, and display this alongside the classing
tree. To approximate the loss of information incurred in
classing the nominal variable X, we follow four steps
(inspired by Greenacre7): (1) Determine the variable V
with the highest association with X. (2) Create a
contingency table between variables X and V. (3)
Calculate the total table measure of association (e.g.,
Uncertainty Coefficient). (4) Starting from the bottom of
the classing tree and going all the way to the top, for
every pair of nodes merged together, calculate the loss of
information incurred, defined by the cumulative percen-
tage loss of information Info-
Loss¼100*(A(fullTable)	A(afterMerging))/A(fullTable),
where A(t) is the association measure for table t. An
alternative measure of information loss is the R2 measure
that can be calculated with Cluster Analysis.28

Experimental evaluation
In this section, we compare the MCA-based implementa-
tion, FCA-based implementation, and the common
approach of arbitrary quantification (arbitrary ordering
and uniform spacing) using a wide range of evaluation
measures. We focus our evaluations on the Distance Step
(MCA vs FCA) because it is the most important step in the
DQC approach. All implementations and evaluations
were done within XmdvTool.6

Setup
We used real as well as synthetic data sets, as listed in
Figure 11. Most of the real data sets used are popular

benchmark data sets taken from Blake and Merz.33 We
have used only the nominal variables for most of these
data sets. The NOTPERF synthetic data set has three
variables (quality, color, size) and is intended to simulate
varying degrees of association. This is the data set used in
all examples given in earlier sections. The PERF synthetic
data set has three variables (region, country and product
code) and is intended to simulate perfect associations (1-
to-many: region-country, many-to-many: specific set of
products are only sold in specific countries).

Quality of visual display
Intuitively, quantification A is better than quantification
B if the visual display resulting from A allows the data
analyst to confirm or discover (true) patterns in the data
that are otherwise harder or impossible to learn using B.
The quality of a visual display is more difficult to measure
and quantify. One alternative is to conduct user studies
and have subjects answer questions using data sets for
which they have some domain knowledge. Example
questions include: Based on your domain knowledge,
are the values that are positioned close together for the
most part similar to each other? Are the values that are
positioned far from the rest of the other values for the
most part that different? Is the perceived structure
improved by the ordering plus spacing? Did you discover
any new patterns (e.g., outliers, clusters, strength of
association between two nominal variables)? In general,
which quantification do you feel is better (easier to
understand, more believable ordering and spacing)?

Automobile data set case study We chose the Automo-
bile Data Set as an initial test because it is easy to
interpret. Figures 12–14 display the quantified versions of
selected variables in a Parallel Coordinates display. In
Parallel Coordinates, each vertical line represents one
variable, and each polyline cutting across the vertical
axes represents one instance in the data set. Parallel
Coordinates is one type of display that requires ordering
and spacing of values and it can display several variables
compactly. In these figures, we have ordered the variables
such that the vertical axes of highly associated variables
are adjacent to each other for easier interpretation.

The MCA-based display (Figure 12) and the FCA-based
display (Figure 13) present alternative notions of similar-
ity among the values. Some results are similar (Peugot/
Mercedes are positioned away from Honda/Mazda), some
are different (the spacing between Convertible/Hardtop/
Hatchback and Sedan/Wagon). But both MCA and FCA
displays tend to agree with our domain knowledge.
Which is better depends on the user’s preference. Also,
both MCA and FCA-based displays have fewer line
crossings (125 and 120 respectively) than the Arbitrary
Quantification display (208) (Figure 14), which we
believe improves interpretability.

PERF data set case study Figures 15 and 16 display the
quantified versions of the variables in the PERF Data Set.Figure 11 Evaluation data sets.
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Recall that the region-country pair has a 1-to-many
association while the country-product code pair has a
many-to-many association. These perfect associations are

revealed in all CA-based quantifications but are hidden in
the arbitrary quantification.

Figure 12 Automobile data, MCA-based quantification.

Figure 13 Automobile data, FCA-based quantification.
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AIDSPIDS data set case study The AIDSPIDS data set
contains information abstracted from acquired immuno-
deficiency syndrome (AIDS) cases reported in the United
States from 1981 to 2000.34 Two variables, DxDate and
RepDate, contain the year and month. Variable MSA is
the metropolitan area code.

After the DQC analysis process presented in the above
sections, a parallel coordinate plot is generated to show
the different associations between nominal values. By
brushing a cluster as shown in Figure 17, we can find that
the cities with MSA code of 6780,2000, 2880 6520 and
7320 present similar behaviors in these AIDS cases
(Figure 17). The careful examination of the contingency
table of the original data supports this result.

From the scatterplot between Age and MSA, several
similar patterns can be found (Figure 18). The age group
of 1 and 0 appear very close in all AIDS cases reported in
the past 20 years. This makes sense if we look back into
the data set. Age ranges 0 and 1 represent r1 year and
between 1 and 12. The AIDS cases in young children only
occurred in a small number of areas of the country. It is
not difficult to find that several regional groups present
similar patterns in several age groups.

A close look of the zoomed-in view of the scatterplot
between Age and MSA shows that certain nominal values
have been grouped together because they present similar
patterns in the other dimensions (Figure 19). For
example, age classes 8 and 6 are grouped together because
these two groups show similar cases along all regions.

Figure 14 Automobile data, arbitrary quantification.

Figure 15 Perfect association data, FCA-based quantification.

Figure 16 Perfect association data, arbitrary quantification.
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Figure 17 AIDSPIDS data visualized using parallel coordinates. The highlighted cluster corresponds to MSA codes 6780, 2000, 2880

and 7320 that were grouped together by our algorithm. They present similar patterns in the AIDS cases reported. Some labels were

filtered to reduce clutter.

Figure 18 AIDSPIDS data scatterplot of Age and MSA code. Similar patterns can be found in several age groups and regional clusters.

Note that only a subset of labels are shown along the horizontal axis to avoid clutter.
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Similarly, age classes 9 and 4 are mapped very closely
together.

Memory space and processing time
The most memory-intensive part of our implementation
is the use of CA in the Distance Step, so we only focus on
the memory needed there. Ignoring any specific memory
optimization that may be employed by some CA
implementations, in general, the MCA input table
(Figure 9) requires (sum_of_cardinality)2 while the FCA
input table (Figure 10 requires at most max_cardinality *
(sum_of_cardinality_mix_cardinality) for each nominal
variable to be processed. These formulas and the example
tables show that MCA uses more memory than FCA.

Figure 20 shows the percentage of time the FCA-based
approach runs longer than MCA-based using the formula
100* (total_time–MCA total_time)/(MCA_total_time). For
each MCA bar, we show the actual number of seconds
that the MCA-based approach ran. So although the gap
between FCA and MCA run times seems large, the actual
run time of the FCA-based approach is still fast.

Quality of quantification
Intuitively, a given quantification is good if (a) instances
that are close to each other in nominal space are also
close together in quantified space, and (b) if two variables
are highly associated with each other, we expect their

quantified versions to also have a high correlation
measure.

Greenacre7.suggests the use of Average Squared Corre-
lation to measure the quality of a quantification. Given
the original data set, replace each nominal variable Vj

with its quantified version Qj (i.e. scale). For each
instance i, calculate scorei¼ average(Qij) for all variables j.
For each quantified variable Qj, calculate the correlation
of Qj and score for the entire data set. Then calculate the
average_squared_correlation¼ average((correlation(Qj,score))2)
across all Qj. The higher the average squared correlation,
the better the quantification. Intuitively, if two variables
are highly associated with each other, we expect their

Figure 19 A zoomed-in view of AIDSPIDS data set. Age classes 8 and 6 are grouped together because these two groups show similar

cases along most regions of the country. Similarly, age groups 9 and 4 are mapped very closely. Similar patterns are visible in the

clustering of MSA codes.

Figure 20 Total run time of entire DQC approach.
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quantified versions to also have a high correlation
measure. If all nominal variables are highly associated
with each other, then the score of each observation
should be highly correlated with each individual quanti-
fied variable. This further implies that if two observations
are close together in nominal space, then they would also
be close together in quantified space; so the scores of
these observations would be close to each other.

Figure 21 shows the Average Squared Correlation for
MCA-based, FCA-based, and arbitrary quantifications. It
shows that both CA-based quantifications are better than
arbitrary quantification. The figure also verifies the
Optimal Scaling theory, namely, that the quantification
based on the coordinates of the first MCA extracted
dimension is optimal.7 Figure 22 shows how close the
FCA scales are to the MCA scales. This figure uses
boxplots to show, for the real data sets, the distribution
of the correlation between MCA and FCA scales. These
boxplots show the minimum and maximum values as
well as the 25th, 50th and 75th percentile values of each
set of correlation values. Correlation values close to 1.0
mean the FCA scales closely agree with the MCA scales.

Quality of classing
Intuitively, classing A is better than classing B if, given a
classing tree, the rate of information loss with each
merging is slower. One way of calculating information
loss is discussed in the previous section.

Figure 23 compares the rate of information loss of MCA
compared to FCA for one variable. Each line shows the
cumulative information loss incurred at each merging of
nodes. The lower the line, the slower is the information
loss, the better the classing. The gap between the lines
(MCA_cumulative_loss minus FCA_cumulative_loss) can be
calculated for all variables. Its distribution has been
summarized in Figure 24. This plot shows that the FCA-
based classing is better than MCA-based for some data
sets.

Conclusions
In this paper, we proposed the DQC approach that
enables the exploration of data sets containing nominal
variables using visualization tools that have been
designed exclusively for numeric variables. To make
the approach accessible to data analysts, we implemen-
ted it in XmdvTool, a public-domain multivariate data
visualization package. For our implementation, we used
MCA and our own FCA for the Distance Step, a
modification of the Optimal Scaling formula for the
Quantification Step, and Hierarchical Clustering for the
Classing Step. We evaluated our approach in terms of
memory space requirement, run-time, quality of quanti-
fication, quality of classing, and quality of visual display.
MCA-based and FCA-based quantifications are clearly
better than the common practice of arbitrary quantifica-

Figure 24 Distribution of the difference in MCA and FCA

information loss.

Figure 21 Average squared correlation.

Figure 22 Correlation between MCA scales and FCA scales.

Figure 23 Information loss due to classing for one variable.
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tion. In terms of the quality of classing and quantifica-
tion, MCA seems to perform better than FCA but in
terms of the quality of the visual displays, which one is
better depends on the eye of the beholder. When
memory space is limited, FCA provides a viable alter-
native to MCA for the Distance Step. The adjustment
made to the quantification function to make it work for
variables with perfect association improves upon the
existing technique of taking only the coordinates of the
top CA dimension. Producing classing trees further
allows users to reduce the data for displays requiring
low cardinality nominal variables.

The DQC approach is a general-purpose pre-processing
step which can also be used for other techniques that
require low cardinality nominal variables as input (e.g.,
such as clustering algorithms, association rules, neural
networks), or require numeric variables as input (e.g.,
regression). Possible future work includes allowing the
user to interactively modify the ordering, spacing and
classing of the nominal values, conducting formal
evaluations, and trying other alternatives for each step.
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