1) Insert the following numbers in an empty hash table of size 19.

\[
\begin{align*}
22 & \quad 80 & \quad 18 & \quad 9 & \quad 90 & \quad 12 & \quad 22 & \quad 57 & \quad 86 & \quad 36 & \quad 32 & \quad 88 & \quad 20 & \quad 6 & \quad 62 & \quad 24
\end{align*}
\]

(a) Use chaining and the hash function \(h(k) = k \mod 19 \).

(b) Use open addressing with the hash function \(h(k, i) = ((k \cdot 181) + (i \cdot k \cdot 113)) \mod 19 \).

2) You have given two arrays \(A \) and \(B \). Create two lists \(D \) and \(S \) such that \(S \) contains all the singles (i.e., numbers only in \(A \) or only in \(B \)) and \(D \) contains all the doubles (i.e., numbers in \(A \) and in \(B \)). Your algorithm should run in linear time.

3) You are given an array \(A \) of numbers and a number \(k \). Note that \(A \) is not necessarily sorted. Find two numbers \(x, y \in A \) such that \(x + y = k \). Your algorithm should run in linear time.