Nested Quantifiers

Section 1.5
Nested quantifiers are often necessary to express the meaning of sentences in English as well as important concepts in computer science and mathematics.

Example: “Every real number has an inverse” is

$$\forall x \exists y (x + y = 0)$$

where the domains of x and y are the real numbers.

We can also think of nested propositional functions:

$$\forall x \exists y (x + y = 0)$$ can be viewed as $\forall x \ Q(x)$ where $Q(x)$ is

$$\exists y \ P(x, y)$$ where $P(x, y)$ is $(x + y = 0)$
Thinking of Nested Quantification

- **Nested Loops**
 - To see if $\forall x \forall y P(x, y)$ is true, loop through the values of x:
 - At each step, loop through the values for y.
 - If for some pair of x and y, $P(x, y)$ is false, then $\forall x \forall y P(x, y)$ is false and both the outer and inner loop terminate.

 $\forall x \forall y P(x, y)$ is true if the outer loop ends after stepping through each x.

 - To see if $\forall x \exists y P(x, y)$ is true, loop through the values of x:
 - At each step, loop through the values for y.
 - The inner loop ends when a pair x and y is found such that $P(x, y)$ is true.
 - If no y is found such that $P(x, y)$ is true the outer loop terminates as $\forall x \exists y P(x, y)$ has been shown to be false.

 $\forall x \exists y P(x, y)$ is true if the outer loop ends after stepping through each x.

- If the domains of the variables are infinite, then this process can not actually be carried out.
Order of Quantifiers

Examples:

1. Let $P(x,y)$ be the statement “$x + y = y + x.$” Assume that U is the real numbers. Then $\forall x \ \forall y P(x,y)$ and $\forall y \ \forall x P(x,y)$ have the same truth value.

2. Let $Q(x,y)$ be the statement “$x + y = 0.$” Assume that U is the real numbers. Then $\forall x \ \exists y P(x,y)$ is true, but $\exists y \ \forall x P(x,y)$ is false.
Questions on Order of Quantifiers

Example 1: Let U be the real numbers, Define $P(x,y) : x \cdot y = 0$

What is the truth value of the following:

1. $\forall x \forall y P(x,y)$
 Answer: False

2. $\forall x \exists y P(x,y)$
 Answer: True

3. $\exists x \forall y P(x,y)$
 Answer: True

4. $\exists x \exists y P(x,y)$
 Answer: True
Example 2: Let U be the real numbers without 0, Define $P(x,y) : x/y = 1$
What is the truth value of the following:

1. $\forall x \forall y P(x,y)$
 Answer: False

2. $\forall x \exists y P(x,y)$
 Answer: True

3. $\exists x \forall y P(x,y)$
 Answer: False

4. $\exists x \exists y P(x,y)$
 Answer: True
Quantifications of Two Variables

<table>
<thead>
<tr>
<th>Statement</th>
<th>When True?</th>
<th>When False</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall x \forall y P(x, y)$</td>
<td>$P(x,y)$ is true for every pair x,y.</td>
<td>There is a pair x, y for which $P(x,y)$ is false.</td>
</tr>
<tr>
<td>$\forall y \forall x P(x, y)$</td>
<td>$P(x,y)$ is true for every pair x,y.</td>
<td>There is a pair x, y for which $P(x,y)$ is false.</td>
</tr>
<tr>
<td>$\forall x \exists y P(x, y)$</td>
<td>For every x there is a y for which $P(x,y)$ is true.</td>
<td>There is an x such that $P(x,y)$ is false for every y.</td>
</tr>
<tr>
<td>$\exists x \forall y P(x, y)$</td>
<td>There is an x for which $P(x,y)$ is true for every y.</td>
<td>For every x there is a y for which $P(x,y)$ is false.</td>
</tr>
<tr>
<td>$\exists x \exists y P(x, y)$</td>
<td>There is a pair x, y for which $P(x,y)$ is true.</td>
<td>$P(x,y)$ is false for every pair x,y</td>
</tr>
<tr>
<td>$\exists y \exists x P(x, y)$</td>
<td>$P(x,y)$ is false for every pair x,y</td>
<td></td>
</tr>
</tbody>
</table>
Translating Nested Quantifiers into English

Example 1: Translate the statement

\[\forall x \ (C(x) \lor \exists y \ (C(y) \land F(x, y))) \]

where \(C(x)\) is “\(x\) has a computer,” and \(F(x,y)\) is “\(x\) and \(y\) are friends,” and the domain for both \(x\) and \(y\) consists of all students in your school.

Solution: Every student in your school has a computer or has a friend who has a computer.

Example 1: Translate the statement

\[\exists x \ \forall y \ \forall z \ ((F(x, y) \land F(x, z) \land (y \neq z)) \rightarrow \neg F(y, z)) \]

Solution: There is a student none of whose friends are also friends with each other.
Example: Translate “The sum of two positive integers is always positive” into a logical expression.

Solution:

1. Rewrite the statement to make the implied quantifiers and domains explicit:
 “For every two integers, if these integers are both positive, then the sum of these integers is positive.”

2. Introduce the variables x and y, and specify the domain, to obtain:
 “For all positive integers x and y, $x + y$ is positive.”

3. The result is:
 $$\forall x \forall y ((x > 0) \land (y > 0) \rightarrow (x + y > 0))$$
 where the domain of both variables consists of all integers
Example: Use quantifiers to express the statement “There is a woman who has taken a flight on every airline in the world.”

Solution:

1. Let $P(w,f)$ be “w has taken f” and $Q(f,a)$ be “f is a flight on a.”
2. The domain of w is all women, the domain of f is all flights, and the domain of a is all airlines.
3. Then the statement can be expressed as:
 \[\exists w \ \forall a \ \exists f \ (P(w,f) \land Q(f,a)) \]
Choose the obvious predicates and express in predicate logic.

Example 1: “Brothers are siblings.”
Solution: $\forall x \forall y (B(x,y) \rightarrow S(x,y))$

Example 2: “Siblinghood is symmetric.”
Solution: $\forall x \forall y (S(x,y) \rightarrow S(y,x))$

Example 3: “Everybody loves somebody.”
Solution: $\forall x \exists y L(x,y)$

Example 4: “There is someone who is loved by everyone.”
Solution: $\exists y \forall x L(x,y)$

Example 5: “There is someone who loves someone.”
Solution: $\exists x \exists y L(x,y)$

Example 6: “Everyone loves himself”
Solution: $\forall x L(x,x)$
Example 1: Recall the logical expression developed three slides back:
\[\exists w \forall a \exists f \left(P(w,f) \land Q(f,a) \right) \]

Part 1: Use quantifiers to express the statement that “There does not exist a woman who has taken a flight on every airline in the world.”

Solution: \[\neg \exists w \forall a \exists f \left(P(w,f) \land Q(f,a) \right) \]

Part 2: Now use De Morgan’s Laws to move the negation as far inwards as possible.

Solution:
1. \[\neg \exists w \forall a \exists f \left(P(w,f) \land Q(f,a) \right) \]
2. \[\forall w \neg \forall a \exists f \left(P(w,f) \land Q(f,a) \right) \] by De Morgan’s for \(\exists \)
3. \[\forall w \exists a \neg \exists f \left(P(w,f) \land Q(f,a) \right) \] by De Morgan’s for \(\forall \)
4. \[\forall w \exists a \forall f \neg \left(P(w,f) \land Q(f,a) \right) \] by De Morgan’s for \(\exists \)
5. \[\forall w \exists a \forall f \left(\neg P(w,f) \lor \neg Q(f,a) \right) \] by De Morgan’s for \(\land \).

Part 3: Can you translate the result back into English?

Solution:
“For every woman there is an airline such that for all flights, this woman has not taken that flight or that flight is not on this airline”