Model of Computation and Runtime Analysis
Model of Computation
Model of Computation

Specifies

- Set of operations
- Cost of operations (not necessarily time)

Examples

- Turing Machine
- Random Access Machine (RAM)
- PRAM
- Map Reduce(?)
Random Access Machine

Word
- Group of constant number of bits (e.g. byte)
- $\geq \log(\text{input size})$
- Usually integers or floats

Memory
- Big array of words
- Access by address

Operations
- Read and write a word from or into memory
- Arithmetic $+$, $-$, \ast, $/$, mod, $\lfloor \rfloor$
- Logic (can be bitwise) \wedge, \lor, xor, \neg
- Comparison based decisions

Each operation cost 1 unit of time.
Asymptotic Complexity

Goal
▶ Determine runtime of an algorithm.

Depends on
▶ Input
▶ Hardware
▶ Programming language, compiler, and runtime environment

Solution
▶ Asymptotic Complexity
▶ How does the runtime behave based on the input size n?
Asymptotic Complexity

Hardware
- Raspberry Pi 2B 0.9 GHz
- Nexus 5 2.3 GHz
- Intel i7 4.0 GHz
- Same for other components (e.g. memory)

Runtime Environment
- Machine code (e.g. C++)
- Managed code (e.g. C#/Java)
- Interpreted code (e.g. Python)
- Virtual Machines (e.g. VirtualBox)

Conclusion
- Ignore constant factors.
Asymptotic Complexity

Consider two algorithms

\[T_1(n) = n^2 + 5n + 5 \]

\[T_2(n) = n^2 \]

\[
\begin{array}{ccccccc}
 n & 4 & 16 & 64 & 256 & 1024 & 4096 \\
 T_1(n) & 41 & 341 & 4,421 & 66,821 & 1,053,701 & 16,797,701 \\
 T_2(n) & 16 & 256 & 4,096 & 65,536 & 1,048,576 & 16,777,216 \\
 T_1/T_2 & 2.5625 & 1.332 & 1.0793 & 1.0196 & 1.0049 & 1.0012 \\
\end{array}
\]

Conclusion

\[\text{Only keep strongest part. (} n^2 \text{ in this case) } \]
Example

Consider two algorithms and two computers

- Fast computer and slow algorithm
 10⁷ operations per second $T_1(n) = n^2$

- Slow computer and fast algorithm
 10⁴ operations per second $T_2(n) = n \lceil \log_2 n \rceil$

- Input size: 10⁶

Runtime

- $T_1 = \frac{(10^6)^2}{10^7} s = 10^5 s \approx 27.8$ h

- $T_2 = \frac{10^6 \lceil \log_2 10^6 \rceil}{10^4} s = 2,000 s \approx 33.3$ min

Conclusion

- First lower complexity, then constant factors.
Big-O Notation

Based on complexity, $3n^2 - \log_2 n$, and $n^2 + 5n + 5$ are the same as n^2. How do we write this?

Big-O Notation

- $O(g) = \{ f : \mathbb{N} \rightarrow \mathbb{N} \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \geq n_0 : f(n) \leq c \cdot g(n) \}$
- $f \in O(g)$ means g is an upper bound for f.
- $O(3n^2 - \log n) = O(n^2 + 5n + 5) = O(n^2)$

If an algorithm has runtime $n^2 + 5n + 5$, we say it runs in $O(n^2)$ time.

Note that $O(n) \subset O(n \log n) \subset O(n^2)$
Big-O Notation

\[f \in \Omega(g) : \text{ } g \text{ is a lower bound for } f. \]
- \[\exists c > 0 \ \exists n_0 > 0 \ \forall n \geq n_0 : f(n) \geq c \cdot g(n) \]
- \[f \in \Omega(g) \iff g \in O(f) \]

\[f \in \Theta(g) \]
- \[\exists c_1, c_2 > 0 \ \exists n_0 > 0 \ \forall n \geq n_0 : c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \]
- \[\Theta(g) = O(g) \cap \Omega(g) \]

\[f \in o(g) : f \text{ is dominated by } g. \]
- \[\forall c > 0 \ \exists n_0 > 0 \ \forall n \geq n_0 : f(n) \leq c \cdot g(n) \]
 (This includes \(c \leq 1 \).)
Common Examples

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>constant basic operations</td>
</tr>
<tr>
<td>$O(\log n)$</td>
<td>logarithmic binary search</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>linear counting, linear search, Eulerian cycle</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>sorting, finding doubles, convex hull</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>quadratic checking all pairs</td>
</tr>
<tr>
<td>$O(2^n)$</td>
<td>exponential SAT</td>
</tr>
<tr>
<td>$O(n!)$</td>
<td>checking all permutations</td>
</tr>
</tbody>
</table>
True or False? Explain your answer.

a) \(f \in \mathcal{O}(g) \) implies \(g \in \mathcal{O}(f) \)

b) \(f + g \in \Theta(\text{min}(f, g)) \)

c) \(f \in \mathcal{O}(g) \) implies \(\log f \in \mathcal{O}(\log g) \)

d) \(f \in \mathcal{O}(g) \) implies \(2^f \in \mathcal{O}(2^g) \)

e) \(f \in \mathcal{O}(f^2) \)

f) \(f \in \mathcal{O}(g) \) implies \(g \in \Omega(f) \)

g) \(f(n) \in \Theta(f(n/2)) \)

h) \(g \in o(f) \) implies \(f + g \in \Theta(f) \)
Runtime Analysis for Recurrences
Divide and Conquer

Idea

▶ Split problem into smaller sub-problems.
▶ Solve sub-problems recursively.
▶ Combine solutions of sub-problems to solve original problem.

Examples

▶ Binary Search
▶ Merge sort, Quicksort
▶ Matrix multiplication
▶ Drawing binary trees
Runtime of Divide and Conquer

General Formula

\[T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
 a \cdot T\left(\frac{n}{b}\right) + f(n) & \text{if } n > 1
\end{cases} \]

For simplicity, we ignore the case \(n = 1 \).

Binary Search

\[T(n) = T\left(\frac{n}{2}\right) + 1 \]

Merge sort

\[T(n) = 2T\left(\frac{n}{2}\right) + n \]
Solving Recurrence

Substitution Method
- Guess a (upper or lower) bound
- Prove it using induction

Recursion Tree
- Convert recurrence to tree.
- Each node represents a function call.
- Add cost of each layer and of all layers.

Master Theorem
- General solution (for some cases)
Substitution Method

Example: \(T(n) = 2T\left(\frac{n}{2}\right) + n \)

Hypothesis: \(T(n) \in \mathcal{O}(n \log n) \), i.e. \(T(n) \leq c n \log n \)

\[
T(n) = 2T\left(\frac{n}{2}\right) + n \\
\leq 2c \left(\frac{n}{2}\right) \log\left(\frac{n}{2}\right) + n \\
= c n \log n - c n \log 2 + n \\
= c n \log n - n(c \log 2 - 1) \\
\leq c n \log n
\]

\(\square \)
Substitution Method

Example: \(T(n) = 4T\left(\frac{n}{2}\right) + n \)

Hypothesis: \(T(n) \in \mathcal{O}(n^2) \), i.e. \(T(n) \leq c n^2 \)

\[
T(n) = 4T(n/2) + n \\
\leq 4c \left(\frac{n^2}{4}\right) + n \\
= c n^2 + n
\]

Does not work.

General advise for induction: Make your hypothesis stronger.
Substitution Method

Example: \(T(n) = 4T\left(\frac{n}{2}\right) + n \)

Hypothesis: \(T(n) \leq c n^2 - n \)

\[
T(n) = 4T(n/2) + n \\
\leq 4c \left(\frac{n^2}{4}\right) - 4\left(\frac{n}{2}\right) + n \\
= c n^2 - 2n + n \\
= c n^2 - n
\]

□
Recursion Tree

Example: \(T(n) = 4T\left(\frac{n}{2}\right) + n^2 \)
Recursion Tree

Example: \(T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{4}\right) + T\left(\frac{n}{8}\right) + n \)

\[
\sum_{i=0}^{\log n} \left(\frac{7}{8}\right)^i n \leq 8n
\]

\[
\sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \quad \text{for } 0 < x < 1
\]
Recursion Tree

Example: \(T(n) = 3T\left(\frac{n}{2}\right) + n \)

\[\sum_{i=0}^{\log n} \left(\frac{3}{2}\right)^i n \]
Example: \(T(n) = 3T(n/2) + n \)

We know, \(\sum_{i=0}^{m} r^i = \frac{r^{m+1} - 1}{r - 1} \)

Thus,

\[
n \sum_{i=0}^{\log_2 n} \left(\frac{3}{2} \right)^i = n \frac{1.5 \cdot 1.5^{\log_2 n} - 1}{1.5 - 1}
\]

\[
= 3n \cdot 1.5^{\log_2 n} - 2n
\]

\[
= 3n \cdot (2^{\log 1.5})^{\log_2 n} - 2n
\]

\[
= 3n \cdot (2^{\log n})^{\log 1.5} - 2n
\]

\[
\approx 3n \cdot n^{0.58} - 2n
\]

\[
= 3n^{1.58} - 2n
\]

\(\in \Theta(n^{1.58}) \)
Master Theorem

Consider a recurrence in the form (with \(a \geq 1, b > 1\))

\[
T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)
\]

(1) \(f(n) \in \mathcal{O}(n^{\log_b a - \varepsilon}) \Rightarrow T(n) \in \Theta(n^{\log_b a})\)

(2) \(f(n) \in \Theta(n^{\log_b a}) \Rightarrow T(n) \in \Theta(n^{\log_b a \log n})\)

(3) \(f(n) \in \Omega(n^{\log_b a + \varepsilon}) \Rightarrow T(n) \in \Theta(f(n))\)

For (1) and (3), \(\varepsilon > 0\).

For (3), \(0 < c < 1\) and \(af\left(\frac{n}{b}\right) \leq cf(n)\).
Master Theorem

\[T(n) = 3T\left(\frac{n}{2}\right) + n \]
(\text{from recursion tree: } \Theta(n^{1.58}))

\begin{itemize}
 \item \(a = 3, \ b = 2\)
 \item \(\log_b a = \log_2 3 \approx 1.58\)
 \item \(f(n) = n, \ f(n) \in \mathcal{O}(n^{\log_b a - \varepsilon}) \) \quad \text{(Case 1)}
 \item \(T(n) \in \Theta(n^{\log_b a}) = \Theta(n^{1.58})\)
\end{itemize}

\[T(n) = 4T\left(\frac{n}{2}\right) + n^2 \]
(\text{from recursion tree: } \Theta(n^2 \log n))

\begin{itemize}
 \item \(a = 4, \ b = 2\)
 \item \(\log_b a = \log_2 4 = 2\)
 \item \(f(n) = n^2, \ f(n) \in \Theta(n^{\log_b a}) \) \quad \text{(Case 2)}
 \item \(T(n) \in \Theta(n^{\log_b a \log n}) = \Theta(n^2 \log n)\)
\end{itemize}
Master Theorem

\[T(n) = 2T\left(\frac{n}{2}\right) + n^2 \]

- \(a = 2, \ b = 2 \)
- \(\log_b a = \log_2 2 = 1 \)
- \(f(n) = n^2, \ f(n) \in \Omega(n^{\log_b a + \varepsilon}) \) (Case 3)
- \(T(n) \in \Theta(f(n)) = \Theta(n^2) \)