Voronoi Diagrams - Divide-and-Conquer

- Partition the set S of points in two equal size subsets S_1 and S_2 such that $s_1.x \leq s_2.x$. Solve directly if $|S| \leq 3$.
- Solve the problem for the two subsets.
- Merge the two solutions together.
Voronoi Diagrams - Separating Chain

Assume that $VD(S)$ is given. Let σ be the set of segments in $VD(S)$ formed by bisectors of one point in S_1 and one point in S_2.

- Claim: σ is always a monotone (w.r.t. y-axis).
- How to determine σ?
- How to construct $VD(S)$ when σ, $VD(S_1)$ and $VD(S_2)$ are given?
Computational Geometry

Voronoi Diagrams

Separating Chain - Proving \(y \)-Monotonicity

- Separating chain turns upward.
- Separating chain stops.
Computational Geometry

Voronoi Diagrams

Separating Chain - Proving y-Monotonicity

- Two non-crossing separating chains.
- Two crossing separating chains.
Voronoi Diagrams - Divide-and-Conquer
Computational Geometry

Voronoi Diagrams

Voronoi Diagrams - Divide-and-Conquer