Node Hardware

- Improved microprocessor performance means availability of desktop PCs with performance of workstations (and of supercomputers of 10 years ago) at significantly lower cost
- Parallel supercomputers are now equipped with COTS components, especially microprocessors
- Increasing usage of SMP nodes with two to four processors
- The average number of transistors on a chip is growing by about 40% per annum
- The clock frequency growth rate is about 30% per annum

Three Basic Operations

- Instruction execution
 - Involves only CPU and registers
- Register loading
 - Load data from cache or memory into registers
 - Involves CPU, front-side bus, cache, memory
- Peripheral usage
 - Copying data through I/O bus from peripheral to memory
 - Involves peripheral, I/O bus, interface from I/O bus into peripheral and memory, memory

Performance Convergence

Commodity cluster node

- Processor (CPU)
- On processor registers
- Cache – 10 times faster than memory
- Memory
- Motherboard
- Bus
- Power Supply
- Network Interface Controller (NIC)
- Disk controller
- Disks
Processor

- Binary encoding determined by Instruction Set Architecture (ISA)
- Processors can share ISA but not have identical ISAs due to addition of features (instructions)
 - SSE and SSE2 are numerical instructions for PIII and P4
- Processor clock rate in MHz or GHz is number of clock ticks per second (up to 3GHz in 2003)
 - CPUs with different clock rates can perform equivalently
 - CPUs with same rate can perform differently
- Instructions per second / Floating point instructions per second (fps) depend also on ISA, and components on chip

Processors

- Intel IA32 (x86) Processors
 - Pentium 3, Pentium4, Pentium Pro and Pentium Xeon
 - Athlon, AMD x86, Cyrix x86, etc.
- Digital Alpha 21364
 - Alpha 21364 processor integrates processing, memory controller, network interface into a single chip
- IBM PowerPC G5
- IA64
- Opteron
- Sun SPARC
- SGI MIPS
- HP PA-RISC
- Berkeley Intelligent RAM (IRAM) integrates processor and DRAM onto a single chip

IA32

- 32 bit instruction set
- Binary compatibility specification
 - Hardware may be very different but instruction set is the same
 - Pentium III, 4 and Athlon
- Additions to ISA include SSE and SSE2 (streaming SIMD extensions)
 - Can substantially increase performance
 - Important to consider
- Hyperthreading: multiple threads per CPU
 - Negatively impacts performance
 - Can be turned off

Processor

- Cache mitigates the effect of much slower memory
- CPUs can have cache kilobytes to 4 to 8 gigabytes
IA32

- **Pentium 4**
 - Designed for higher clock cycles, but less computing power per cycle
 - Also has SSE2 and Hyperthreading
- **Pentium III**
 - Has SSE and L2 cache on chip
 - Can be used in 2 CPU SMPs
 - Xeon can be used in 4 CPU SMPs
- **Athlon**
 - Processor architecture like PIII, bus like Compaq Alpha
 - Two 64KB L1 caches and one 256 KB L2 cache
 - Has SSE but not SSE2
 - Can be used in 2 CPU SMPs

Power PC G5

- IBM and Apple Mac
- 64 bit CPU running at over 2GHz (2003)
- 1GHz front-side bus
- Multiple functional units

HP/Compaq/DEC Alpha 21264

- True 64 bit architecture
- RISC (Reduced Instruction Set Computer)
 - Simple instructions at high clock rate
- Fastest for a long time
- Used in Cray T3D and T3E
- Popular in early and large clusters due to superior fp performance e.g. Los Alamos NL ASCI Q

IA64 Itanium

- New IS, cache design, fp processor
- Clock rates 1GHz plus, multway fp instruction issue
- Aimed at 1 to 2 Gflops performance
 - HPServer rx4610, 800 MHz Itanium SPEcp2000 of 701
 - HP nx2600, 1.5 GHz I2, SPedcp2000 of 2119
 - I2 is significantly faster
- Both need efficient compilers to exploit EPIC (Explicitly Parallel Instruction Computing)
AMD Opteron

- Supports IA32 and IA64 ISA
- Can run legacy 32 bit codes
- Can access in excess of 4GB memory with new 64 bit instructions
- Integrated DDR memory controller
- Up to 3 high-performance "Hypertransport" interconnects with 6.4GB/sec bandwidth per CPU
- Early Opterons had SPECfp2000 of 1154
- Can have 2 CPU SMPs each with separate memory busses
- More popular than I2 for clusters

RAM size

- RAM size determines size of problem that can be run at reasonable speed
- Alternatives:
 - Out-of-core calculations
 - Virtual memory
- Old rule of thumb
 - 1B RAM per 1 flop (gross approximation)

Memory (RAM)

- Standard Industry Memory Module (SIMM) – RDRAM and SDRAM
- Access to RAM is extremely slow compared to the speed of the processor
 - Memory busses (front side busses FSB) run at 100MHz to 800MHz
 - Memory speed metrics
 - Peak memory bandwidth: burst rate from RAM to CPU
 - Currently 1 to 4 GB/sec
 - FSB must be fast enough for this
- Extended Data Out (EDO)
 - Allow next access to begin while the previous data is still being read
- Fast page
 - Allow multiple adjacent accesses to be made more efficiently

I/O Channels

- Bus from peripherals to main memory
- Connected by a bridge (PCI chipset) to memory
- PCI bus (1994)
 - 32 bit/33MHz : 133MB/s peak, 125MB/s attained
 - 64 bit/66MHz : 500MB/s peak, 400-500M/s in practice
- PCI-X
 - 64bit/133MHz : 900MB/s - 1GB/s peak
- PCI-X 2
 - 64bit/PCI-X 266 and PCI-X 533, offering up to 4.3 gigabytes per second of bandwidth
I/O Channels

- AGP (not really a bus)
 - High speed graphics adapters
 - Better peak than PCI and PCI-X
 - Not bus
 - Directly addresses main memory – can only support one device
 - AGP 2.0 peak 1GB/s to main memory, AGP 3.0 is 2.1 GB/s
- Legacy Busses (Slow)
 - ISA bus (AT bus)
 - Clocked at 5MHz and 8 bits wide
 - Clocked at 13MHz and 16 bits wide
 - VESA bus
 - 24/32 bits bus matched system’s clock speed

Motherboard

- PCB (Printed Circuit Board)
- Next to CPU most important component for performance
- Sockets/connectors include:
 - CPU, Memory, PCI/PCI-X, AGP, Floppy disk
 - ATA and/or SCSI
 - Power
 - LEDs, speakers, switches, etc
 - External I/O
- Chips
 - System bus to memory
 - Peripheral bus to system bus
 - PROM with BIOS software

PCI-Express

- High-bandwidth, low pin count, serial, interconnect technology
 - x1: 2.5GB/s for Gigabit Ethernet, TV Tuners, 1394a/b controllers, and general purpose I/O.
 - X4: 16GB/s for video cards (double AGPx8)
 - Express Card (successor to PCMCIA for laptops)
 - Supports x1 PCI-Express and Fast USB

Motherboard

- Choice restricts
 - CPU
 - Clock speed
 - # of CPUs
 - Memory capacity, type
 - Disk interfaces
 - Number and types of I/O busses
Motherboards – i2
- Supermicro i2DML-8G2
- Dual i2
- Intel E8870 chipset
- 400 MHz FSB
- 64-bit 133/100 MHz PCI-X
- http://www.supermicro.com/PRODUCT/MotherBoards/E8870/i2DML-8G2.htm

Motherboards - Opteron
- Tyan Thunder K7
- Dual Opteron
- AMD’s new 760MP chipset
- DDR memory support,
- 64-bit PCI slots,
- AGP Pro slot (and integrated VGA),
- dual LAN controllers,
- dual-channel Ultra160 SCSI.

Chipsets
- North Bridge: FSB connects CPU, memory bus, AGP
- South Bridge: I/O bus bridge, disk & USB controllers
BIOS

- Software that initializes system so can boot, does POST (power on self test) including memory test, SCSI and IDE bus initialization
- BIOS is motherboard specific
- Various BIOSes
 - PXE (Pre-execution environment) allows boot from network config and boot images
 - Uses DHCP and tftp
 - Can be in BIOS or ethernet card initialization code
 - LinuxBIOS streamlined but does not support all OSes
- Linux and Windows 2000
- Adv: source available, faster (<5 sec v 10 to 90 secs)

Local Hard Disks

- Disk busses: SCSI, IDE (EIDE or ATA), SATA (serial ATA)
- IDE controllers on motherboard support 2 busses of 2 devices each. Higher CPU utilization v SCSI.
 - Fastest UDMA133: 133 MB/s
- SCSI used in servers.
 - Faster (up to 320 MB/s), more devices, more expensive
- SATA: serial as opposed to parallel (ATA, SCSI)
 - 150 MB/s, smaller cables, 2 devices per bus, hot pluggable
 - Easier to increase bus speeds
- Disk platter speeds: 5400, 7200, 10000, 15000rpm

RAID

- Redundant Array of Inexpensive Disks
- Disk aggregate appear as single disk
- Adv: larger data, faster, redundancy
- Software (possibly high CPU utilization) or hardware
- RAID versions
 - RAID0: striping across multiple disks, faster reads & writes
 - RAID1: mirroring, 2 copies of data, faster read, slower write
 - RAID5: one disk for parity info, can recover data from disk failure, read faster, writes require checksum computation
- RAID used on cluster storage nodes
Nonlocal Storage

- Storage device bus traffic transferred over network
 - Net may be dedicated or shared
- iSCSI: SCSI encapsulated in IP
 - Possible bottleneck
 - FibreChannel similar but dedicated network and protocol
- Network file systems: NFS & PVFS
 - Data transmitted with filesystem semantics

Tiled Display

- Series of cluster nodes outputting to projector
- Usually back projection
- Synchronization issues
 - Software synch
 - genlock

Video

- Usually only to debug
 - hardware & update BIOS
- Advanced not needed unless cluster used for visualization
 - e.g. tiled displays
 - Used to show regions of 3D visualizations
- AGP or PCI
 - Nvidia GeForce, ATI Radeon, Matrox

Peripherals

- Other peripherals not usually used in clusters
 - USB (1.1, 2.0), Firewire
 - USB might be used for keyboard/mice
- Legacy interfaces
 - Keyboard, mice, serial (RS232), parallel