Operating System - Linux

- What is Linux?
- Why Linux?
 - Most popular Open Source operating system
 - Marketed commercially now
 - Easily modified and tweaked
 - Pool of experienced users
 - Easily administered remotely
 - Can be trimmed down (to 600KB) – reduce potential for bugs
 - Supports many processor architectures (Alpha, IA32, IA64, PowerPC, Opteron)
- Does it need to be modified for HPC? No.

Kernel v Distribution

- Linux is kernel which controls hardware, multitasking, virtual memory, shared libraries, demand loading, shared copy-on-write executables, TCP/IP, file systems
- Distribution usually includes installer and also includes many other public domain programs
 - RedHat, SuSe, Fedora, Mandrake, SlackWare,
- Also integrated hardware/software Beowulf solutions based on one of these
- Beowulf setup systems e.g. OSCAR, NPACI Rocks
GPL v Open Source

- Modifications of GPLed software must not be distributed as binary only. Source must be made available
 - Linux is GPLed
- Open Source software which is not GPLed may be modified and sold as binary only code.
 - Mozilla, X-windows, BSD, MPICH

Linux Distributions

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat</td>
<td>www.redhat.com</td>
</tr>
<tr>
<td>SuSe</td>
<td>www.suse.com</td>
</tr>
<tr>
<td>Mandrake</td>
<td>www.mandrake.com</td>
</tr>
<tr>
<td>Debian</td>
<td>www.debian.org</td>
</tr>
<tr>
<td>SlackWare</td>
<td>www.slackware.com</td>
</tr>
<tr>
<td>TurboLinux</td>
<td>www.turbolinux.com</td>
</tr>
<tr>
<td>Connectiva</td>
<td>www.connectiva.com</td>
</tr>
<tr>
<td>Fedora</td>
<td>www.fedora.us</td>
</tr>
</tbody>
</table>
Which Distribution for a Cluster?

- Local Familiarity
- Language Support
- Bundled Software/Hardware
- Cluster versions
 - OSCAR, NPACI Rocks
 - Essentially diffs of standard distributions
- Licensing

Version Numbers

- Kernel
 - Linus Torvalds and Core Team (Donald Becker, Alan Cox, Stephen Tweedie, David Miller)
 - Contributions sent in may be incorporated
- Distribution version number and Kernel version number not related
- Kernel versions
 - Stable (even minor numbers) 2.2, 2.4
 - Development (odd minor numbers) 2.1, 2.5
- Distributions choose version numbers as they please
 - May also modify basic kernels
 - If so, generic upgrades will not work
Tracking down kernel/driver issues

- Read the documentation
 - HOWTO documents in /usr/doc/HOWTO
- Web surf (start at Google!!)
- Consult local Linux users
- Read mailing lists & search for your topic
 - Archives like marc.theaimsgroups.com
- If you narrow down mail the *appropriate* mailing groups
- As a last resort look at source code and mail author

Compiling the Linux Kernel

- /proc – interface to kernel data structures
 - `ls -l /proc/version ; cat /proc/version`
- Cd /usr/src – this is often where the kernel source is (if you selected “kernel source” when you installed)
 - `ls –ld linux` - see it is a symbolic link
- If you are lucky can compile with
 - make clean; make bzImage
- Try
 - `ls –l /usr/src/linux/arch/i386/boot/bzImage`
Loadable Kernel Modules

- Dynamic way to extend kernel functionality
 - Don't retain in memory, don't require kernel recompile
 - Helps to keep kernel small and aids stability
- Modules for device drivers, file systems, special features
- May get 500 or more loadable modules in a distribution

Slimming the Kernel

- Need to re-configure see README in kernel source directory
 - The graphic version popular (make xconfig)
- Start slow, remove a few features, recompile, test
- Think server
 - Remove things like radio, sound, IrDA, ISDN, ARCnet. Other networks not used, USB (if don't have USB keyboard/mouse), joystick, telephony
- Optimize for CPU
 - Compile to use most recent instruction set your processor supports
Slimming the Kernel (ctd.)

- Optimize for number of processors
 - If only one CPU remove SMP support
- Remove firewall or DoS protection
 - Intensive message passing can be mistaken for DoS??
 - Reduces overhead
- Could also compile all modules in and remove loadable module support
- Could reduce from 1.5MB with 10MB of loadable modules to 600Kb with no loadable modules

Possibly Worth Supporting

- NFS – for small clusters
- Serial console
- Kernel IP configuration – get IP address using BOOTP or DHCP
- NFS root – supports diskless booting by allowing mounting of root file systems
- Special high performance network drivers – Gigabit Ethernet, Myrinet
- A file system
Network Booting

- Allows kernel to be loaded from NAS (network attached storage)
- Need specialized BIOS or network adapter
- Most common standard Intel PXE 2.0
 - Firmware boot code requests address and kernel from NAS and gets kernel with TFTP
 - TFTP not scalable
 - Need to limit number of nodes booting or use multiple TFTP servers and segregate Ethernet collision domains

Diskless Operation

- Why?
 - Security reasons
 - If need to change kernels/distributions frequently
 - Only need to maintain one image
- See Diskless-HOWTO and Diskless-root-NFS-HOWTO
- Need NFS root to mount other needed configuration files (/etc/passwd etc) and dynamic libraries
- NFS is not scalable for large clusters (see later)
Downloading and Compiling Kernel

- Download from www.kernel.org
- Read documentation – may need to download other components (e.g. libc)
- Distribution kernels may have mods from stock kernel e.g. device drivers, tuning, etc
 - Can go to entirely generic
 - Can try to download from distribution company
 - Can try to add mods to stock kernel

Linux File Systems

- Default is EXT2 (extended file system version 2)
- EXT2 is not a journaling file system, one where writes ensure that file system is always or can always be put in a consistent state – avoids the need for fsck
- Slightly slower – must write “journal” to disk first, which will enable restoration of consistent state
- So depends on whether want optimum disk performance on local nodes
- Journaling systems: EXT3, ReiserFS (SuSe, better for small files/large dirs), IBM JFS, SGI XFS (optimized for large block writes from virtual memory)
Networked & Distributed File Systems

- Local file systems for scratch data
- Networked file system for sharing data
 - NFS (mounts file system over IP)
 - Problems: scalability and synchronization
 - Performance seriously degrades for > 64 nodes
 - Should not write files in expectation they will be available to other nodes
- Solutions are still experimental
 - E.g. PVFS

Pruning the Node

- Start from server option of installation
- Prune applications automatically started by inetd/xinetd and init.d
- Inetd/xinetd superserver spawns programs to serve requests on sets of ports (see /etc/inetd.conf & /etc/services or /etc/xinetd.d)
- Can eliminate services not needed
- In fact in secure systems where ssh run as daemon may be able to eliminate inetd process itself
Boot Scripts

• /etc/rc.d/init.d scripts run at boot time that often run daemons
• Run as enter or leave run level
• Some scripts only initialize hardware or change settings
• Not all scripts run – which are run at each level can be seen by
 – chkconfig –list | grep ‘3;on’
• No need for lpd, mysql, httpd, named, sendmail, etc
• Normally no need for X windows
• Normally run level 4 is the highest run level on a compute node

Other Processes

• cron scripts
• slocate for indexing file system
• Use to see process and memory they use
 ps –eo pid,pcpu,sz,vsize,user,fname –sort=vsize
Scalable Services

- OS rely on network for services such as time and DNS
- Can cause performance bottlenecks
 - DNS lookups could access a campus server
 - TCP might do reverse DNS lookup per TCP connection
 - NFS, NIS similarly don’t scale well

Virtual Memory Problems

- Demand paged virtual memory usually incurs small performance penalty
- But can be large
- Can lead to mystifying anomalies
 - Extra daemon on nodes causes swapping
- Consider server with 256MB memory
 - Program with 300MB memory usage causes massive swapping (377,093 page faults) and takes 5 minutes
 - With 150MB array only takes 0.5sec and 105 page faults
- May be able to tune to improve performance on clusters
 - Virtual memory/cache locality
Excessive Paging Example

```c
#define MEGABYTES 300
main(){
  int *x, *p, t=1, i, numints=MEGABYTES*1024*1024/sizeof(int);
  x = (int *) malloc(numints*sizeof(int));
  if (!x) { printf("insufficient memory\n"); exit(1); }
  for (i=1; i<=5; i++) {
    printf(Loop %d\n",i);
    for(p=x; p<x+numints-1; p+=1024) {
      *p = *p + t;
    }
  }
}
```

TCP messaging

- Normally tuned for general purpose computing
- In clusters, short low-latency and very long messages common
- 2.2 kernels needed tweaks to stack to improve performance
- See Paul A. Farrell, Hong Ong, *Communication Performance over a Gigabit Network,*
- 2.4 kernels generally OK
- May need to tune for high speed networks like Myrinet
- Browse the Beowulf mailing lists
Final Tuning with /proc

- Probably not much performance improvement unless something is wrong
- See www.linuxhq.com & linuxperf.nl.linux.org if you want to try
- Networking – try
 - cat /proc/net/dev or run /sbin/ifconfig
 - Check using the correct interface
 - Look at collisions, errs, dropped, frame
 - If dropped growing by few packets per sec problem
- Tunable parameters are in /proc/sys/net
 - tcp_sack, tcp_window_scaling etc

Other /proc tuning

- Memory
 - cat /proc/meminfo to see parameters
 - Tune in /proc/sys/vm
- File system /proc/sys/fs
- Harddisk
 - /sbin/hdparam
- Kernel basics /proc/sys/kernel
 - E.g. /proc/sys/kernel/shmem is maximum size of shared memory segments