System Area Networks (SANs)

- **Hardware**
 - Nodes: Network Interface Card (NIC) on I/O bus (PCI, PCI-X) or maybe on motherboard
 - Components
 - Hardware to interface with physical layer of network (copper or fiber)
 - Hardware to interface with I/O bus
 - Transmission rate limited by speed of I/O bus and network
 - Currently more by I/O bus

Network Interface Location

- **NI location**
 - Critical to performance and usability
 - NI1
 - transputer, most implemented at the prototype phase
 - NI2
 - best place for NI, but proprietary system buses
 - NI3
 - most common today, no way to support cache coherence

Data Transfer Process

General Architecture (III)

- **NI-1**
 - instruction set (special communication registers)
 - Transputer from INMOS
 - iWrap, related systolic architecture
 - not successful (too small market)

- **NI-2**
 - ideal (case of high performance bus)
 - system bus based NI
 - poll on cache-coherent NI registers
 - DMA can read/write from/to main memory using burst cycle
 - NI implementation only
NI on I/O bus

- **NI-3**
 - PCI (or PCI-X) based NI
 - use on any system with PCI(-X) I/O bus
- **PCI bus (1994)**
 - 32 bit/33MHz: 133MB/s peak, 125MB/s attained
 - 64 bit/66MHz: 500MB/s peak, 400-500MB/s in practice
- **PCI-X**
 - 64 bit/133MHz: 900MB/s - 1GB/s peak
 -PCI-X 2
 - 64 bit/PCI-X 266 and PCI-X 533, up to 4.3 gigabytes per second of bandwidth
 - PCI-Express x1: 2.5GB/s
- Another disadvantage of the I/O bus location is the loss of some properties such as cache coherence

Network Links

- Vary from commodity LAN (ethernet) to SAN (Myrinet etc)
- Fiber and Copper
- Links can be half or full-duplex
 - Full-duplex – no collisions
 - Half-duplex – performance degraded due to collisions
 - Latency increases due to retransmissions
 - Aggregate bandwidth lower due to cost of collision detection
- Throughput/Latency important parameters
 - 10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps Ethernet
 - Myrinet: 2x20Gbps, Dolphin: 2.60Gbps, SCI: 3.20Gbps, Quadrics: 6.60Gbps
 - Infiniband: 100Gbps

Links

- **Fast Ethernet**
 - 100 Mbps
 - CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
- **HiPPI (High Performance Parallel Interface)**
 - copper-based, 800/1600 Mbps over 32/64 bit lines
 - point-to-point channel
- **ATM (Asynchronous Transfer Mode)**
 - connection-oriented packet switching
 - fixed length (53 bytes cell)
 - suitable for WAN, 155/622 Mbps
- **SCI (Scalable Coherent Interface)**
 - IEEE standard 1596, hardware DSM support, 400MBs

- ServerNet
 - 1 Gbps
 - originally, interconnection for high bandwidth I/O
- Myrinet
 - programmable microcontroller
 - 1.28 Gbps – 2 Gbps
- Memory Channel
 - 800 Mbps
 - virtual shared memory
 - strict message ordering
- Infiniband
 - 10 Gbps
Network Devices

- Hardware interconnecting links
- Main types: hubs, switches
 - Hubs
 - Only possible if link allows contention
 - Single broadcast domain, half-duplex links, inexpensive
 - Need collision/contention detection
 - In presence of contention throughput can drop to 35%
 - Common in 10/100 Mbps
 - Not suitable for clusters

Switches

- Predominant due to price drop/performance benefits
- Switches build database mapping ethernet hardware address to port last seen on
- Only first frame need be broadcast
- Performance of switches
 - Backplane bandwidth e.g. 16 Gbps = 16 ports at 1 Gbps
 - Packets per second
 - Non-blocking
- Small networks – one switch
- Larger networks – require multiple switches
- To reduce bottlenecks on inter-switch links, link aggregation or trunking can be used i.e. use multiple links and treat as one

Hashing Problems in Trunked Links

- Hashing used to distribute traffic over links
- Sub-optimal in cluster due to:
 - Uniformity of hardware
 - Sequential IP and possibly NIC addresses
 - Round robin hashing: good traffic distribution but packet reordering causes problem for higher network layers
- Some switches e.g. Myricom use source routing
 - More scalable
 - Client need to maintain routes to all other clients
 - Leads to better overall performance

Aims

- Price vs. Performance
 - Production volume, expensive physical layer, amount of storage
 - Fast Ethernet($50-100) vs. Myrinet or ServerNet ($1000 or more)
- Scalability
 - Fixed topology vs. dynamic topology, shared media vs. private media
 - Traditionally fixed network topology (mesh, hypercube)
 - Clusters are more dynamic
 - Network can tolerate the increased load and deliver nearly the same bandwidth latency
 - Can afford larger number of nodes
Aims

• Reliability
 – CRC check level/provider, buffering storage for retransmission, protocol complexity
 – two classes of parallel computer
 • scientific and business computing
 – Networks can operate without software overhead
 • error freed physical layer
 • CRC can be computed by NIC itself
 • error signaling (interrupt or status registers)
 • NIC side buffer

Fast Ethernet (II)

• Interconnection devices
 – Repeater
 • restore data and collision signal
 • amplify and regenerate signals
 – Hub
 • central point
 • repeat and copy: All can see it
 – Bridge
 • link adjacent LANs: datalink layer
 • filtering
 • forward to other segment
 – Router
 • link adjacent LANs: network layer
 • shortest path

Fast Ethernet (I)

• 100 Mbps over UTP or fiber-optic cable
• MAC protocol: CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

Gigabit Ethernet Fundamentals

• Gigabit Ethernet (802.3z) 1Gbps
 – Modified Fiber Channel physical layer
 – Actual Bit Rate 1,250,000,000 bits/second!
• Media: Fiber (multimode,singlemode), UTP Cat 5
• Uses the 802.3 Ethernet frame format.
• Full-duplex (point to point) mode and/or half-duplex (switched) mode.
• Half-duplex mode
 – Uses enhanced CSMA/CD access method
 – requires carrier extension to 512 byte time slot to preserve 200m collision domain
 – thus wastes bandwidth
Gigabit Ethernet Fundamentals Cont.

- Support Fiber and Copper media.
 - 25 meters short link copper.
 - 100 meters horizontal copper.
 - 500 meters mult-mode fiber.
 - 3000 meters single mode fiber.
- Ethernet – Next Generation.
 - 10 Gigabit Ethernet (802.3ae).
 - http://www.10gbe.org/

Myrinet (I)

- A SAN evolved from supercomputer technology
- A main product of Myricom (founded in 1994)
- Quite popular in the research community
 - all HW & SW specifications are open & public
- Based on 2 research projects
 - Mosaic by Caltech
 - a fine grain supercomputer, need a truly scalable interconnection network with lots of bandwidth
 - Atomic LAN by USC
 - based on Mosaic technology, a research prototype of Myrinet
- Speed: 1.28 Gbps
- Good price/performance ratio

Myrinet (II)

- Host interface
 - LANai chip
 - a custom VLSI chip, a programmable microcontroller
 - control the data transfer between the host & the network
 - SRAM memory
 - Message data must first be written to the NI SRAM, before it can be injected into the network
 - (+) the great flexibility of the HW due to a programmable microcontroller.
 - (-) but can also be a bottleneck with respect to performance since the LANai runs only at moderate frequencies

Myrinet Host Interface
Myrinet (III)

- Link and Packet Layer
 - similar to ServerNet
 - full duplex 9 bit parallel channel in one direction running at 80MHz
 - network offer 160Mbyte/s physical bandwidth over one channel
 - two different cable type (SAN, LAN)
 - 3m SAN link, 10m LAN link
 - variable length data format
 - route with wormhole switching
 - source path routing
 - consist of routing header
 - special control symbols (STOP, GO)

Myrinet (IV)

- Switches
 - 4, 8 and 16 ports, mixable SAN and LAN
 - any network topology
 - autodetect the absence of a link
 - starting up, host interface detect network topology automatically

- Error Handling
 - MTBF: million hours are reported
 - cable fault and node failure
 - alternative routing by LANai
 - prevent deadlock: time out generates a forward reset (FRES) signal

Flow Control (Slack Buffer Operation)

Performance of Message Layers over Myrinet

<table>
<thead>
<tr>
<th>Machine</th>
<th>API</th>
<th>Latency (µs)</th>
<th>Bandwidth (Mbit/s)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 MHz PPPro</td>
<td>BIP</td>
<td>4.8</td>
<td>1099</td>
<td>LHPC</td>
</tr>
<tr>
<td>166 MHz Pentium</td>
<td>PM</td>
<td>7.2</td>
<td>941</td>
<td>RWCCP</td>
</tr>
<tr>
<td>Ultrix</td>
<td>AM</td>
<td>10</td>
<td>280</td>
<td>GAM</td>
</tr>
<tr>
<td>200 MHz PPPro</td>
<td>TCP (Linux/BIP)</td>
<td>293</td>
<td></td>
<td>LHPC</td>
</tr>
<tr>
<td>200 MHz PPPro</td>
<td>UDP (Linux/BIP)</td>
<td>324</td>
<td></td>
<td>LHPC</td>
</tr>
<tr>
<td>DEC Alpha 500/260</td>
<td>TCP (Digital Unix)</td>
<td>221</td>
<td></td>
<td>Digital</td>
</tr>
<tr>
<td>DEC Alpha 500/260</td>
<td>UDP (Digital Unix)</td>
<td>404</td>
<td></td>
<td>Digital</td>
</tr>
</tbody>
</table>
I/O Architecture Trends

- I/O Moving Outside the Box
- Switched Fabrics Provide Scalability
- But Must Terminate Into a Common, Shared I/O Bus

InfiniBand™ Protocol Features

- Flow & rate control
 - Static rate control to control sources and destinations of different speeds
 - Credit based link-level flow control for efficient congestion avoidance
- Partitioning
 - For performance and functional isolation
 - Transparent I/O Sharing
- Multicasts
 - A single message is distributed by the fabric to multiple destinations
- Network topology
 - Subnet support
 - IPv6 GUIDs for unique end-point id
 - IPv6 addressing headers for global routing
 - Speed matched to the backbone
 - IP compatible fabric management

InfiniBand Components

- Link
- Switch
- Router
- Target Channel Adapter (TCA)
- Host Channel Adapter (HCA)

InfiniBand™ Architecture (IBA)

- HCA = Host Channel Adapter
- TCA = Target Channel Adapter

Dept of Computer Science
Kent State University
Layered Architecture

- Provides forward and backward compatibility / inter-operability
- Allows layers to evolve at that rate technology evolves.

Channel-Based I/O

- Logical, connection-based path between two address spaces
- Protected DMA engine at each end
- Driven by pairs of Work Queues

InfiniBand™ IPC

- Sockets
 - Match IPC Hardware to Legacy Software Needs
- Fast IPC
 - OS Vendor Provided
 - Native HW Performance
- I/O Transport
 - Message Based
 - General Purpose Transport

Message & Connection Concepts

- Send / Receive
- Remote Direct Memory Access (RDMA)
 - Reads
 - Writes
- Atomic
- Multicast
- Reliable
 - Acknowledged
- Unreliable
 - Unacknowledged
- Connected
 - Specific queue pair relationship
- Datagram
 - Indirect destination
InfiniBand Link

- **Link**
 - Full-duplex
 - Point-to-point
 - 1-bit (1X) 2.5Gbps
 - 4-bit (4X) 10Gbps
 - 12-bit (12X) 30Gbps

- Copper, Optical Fiber, and printed circuit.
- Vendor-specific
- May be used in parallel.

InfiniBand Switch

- **Switch**
 - Local network routing
 - Implements up to 255 ports
 - Local Route Header
 - 16-bit Source Local ID
 - 16-bit Destination Local ID

InfiniBand Router

- **Router**
 - Outside local network routing
 - Implements up to 255 ports
 - IBA, WAN, and MAN
 - Global Route Header
 - 128-bit Source Global ID
 - 128-bit Destination Global ID

Switch

- Switches route packets only within a single subnet to reduce complexity and solution cost.
- Optional switch-based multicast for unreliable, datagram service.
• Superset of InfiniBand™ technology Switch functionality.
 • Provides routing between subnets.
 • Subnetting improves scalability, manageability, etc.
 • Subnets leverage IP subnet architecture / concepts.
 • Independent Hardware Vendors may provide a variety of value add solutions across a wide range of price / performance points.
 • Routers may join InfiniBand technology fabric instances to same or disparate fabrics (disparate support is optional)
 – Disparate fabric support allows InfiniBand™ technology subnets to be joined using alternative, intermediate fabrics.
 – Optional multiple protocol support via raw packet over a consolidated data center fabric to remote end nodes.

InfiniBand Host Channel Adapter

- Host Channel Adapter
 - Network Interface Card
 - Connects Processors
 - Subnet manager
 - Assigns Local IDs
 - Location of subnet manager

Message-level Flow Control

- Prevents a transport level “Receive Buffer Empty” NAK.
- Message Level Flow control is invoked for:
 - Sends to a Queue Pair with no Receive Buffer Posted
 - Sends or RDMA accesses to memory that is paged out.
- Reliable Connection:
 - Receiver Not Ready & Receiver Ready frames pace the flow of data.
 - Flow control is invisible to the client.
- Reliable Datagram:
 - Receiver Not Ready NAK indicates message wasn’t received.
 - Flow control is visible to the client.
- Unreliable Datagram & Raw Packet:
 - No flow control.
Link Characteristics: Addressing

- GUID (Globally Unique Identifier): Each TCA, HCA, Switch, and Router has a single unique GUID.
- Local ID (LID): Subnet-unique, 16-bit ID used to identify and route a packet to an endnode port within a single subnet.
- IP Address: Global-unique 128-bit IPv6 ID used to identify an endnode by applications and to route packets between subnets.
 - Each switch and router has one or more LIDs and IPv6 addresses that are used when it is the destination endnode for management messages.

Link Characteristics

- 2.5 Gbaud signaling rate
 - Auto-negotiation for future higher speed signaling
- All links full-duplex
- 1, 4, and 12 wide link widths
- Common backplane connector(s)
 - With auto-negotiation to mutually acceptable width

<table>
<thead>
<tr>
<th>Link Width</th>
<th>Signaling Rate</th>
<th>Unidirectional</th>
<th>Bidirectional</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5 Gbaud</td>
<td>500 MBytes/s</td>
<td>6 GBytes/s</td>
</tr>
<tr>
<td>4</td>
<td>2.5 Gbaud</td>
<td>200 MBytes/s</td>
<td>2 GBytes/s</td>
</tr>
<tr>
<td>12</td>
<td>2.5 Gbaud</td>
<td>1 GByte/s</td>
<td>6 GBytes/s</td>
</tr>
</tbody>
</table>

Software Characteristics Overview

- Software interface to transport layer
 - Verbs specification
- Major specification topics
 - Partitioning
 - Work Request management
 - Memory management
Transport Characteristics Services

- When a QP is created it is set to provide one of the following services:
 - Reliable Connection
 - Unreliable Connection
 - Reliable Datagram
 - Unreliable Datagram
 - Multicast (optional)
 - Raw Packet (optional)

- Definition: “Reliable”
 - HW generates acknowledgments for every packet.
 - HW generates / checks packet sequence numbers
 - HW rejects duplicates, detects missing packets
 - Client transparent recovery from most fabric level errors.

Reliable Connection

One-to-one QP relationship between source end node and destination end node.

Provides:
- RDMA Support
- Send / Receive Support
- Atomic Support
- H/W generated ACKs
- Strong Packet Ordering
- Arbitrary message size, i.e. multi-packet messages
Unreliable Connection

One-to-one QP relationship between source end node and destination end node.

Provides:
- No RDMA Read Support
- Send / Receive Support
- No Atomic Support
- No H/W generated ACKs
- Source provides incrementing sequence numbers - no packet ordering guaranteed at the destination.
- Arbitrary message size, i.e. multi-packet messages

Unreliable Datagram

One-to-many QP relationship between source end node and destination end node.

Provides:
- No RDMA Support
- Send / Receive Support
- No Atomic Support
- No H/W generated ACKs
- No Packet Ordering
- Good QP Scalability
- Limited message size

Reliable Datagram

One-to-many QP relationship between source end node and destination end node. Optional H/W implementation.

Provides:
- RDMA R / W Support
- Send / Receive Support
- Optional Atomic Support
- H/W generated ACKs
- Strong Packet Ordering between any two end nodes
- QP Scalability
- Limited message size

Unreliable Multicast

One-to-many QP relationship between source and destinations end nodes. Optional functionality.

Provides:
- Automatic packet replication within switches and routers - reduces number of packets injected into the subnet
- Send / Receive Support
- No RDMA Support
- No Atomic Support
- H/W generated ACKs
- No Packet Ordering between end nodes
- Limited message size
Topology

- Easy Case: Single switch connecting all hosts
 - All hosts are equally well connected
- Multiple switches
 - Hosts on the same switch enjoy lower latency to one another
 - Depending on the topology packets between hosts not on the same switch experience greater latency
 - Links between switches may be aggregated to improve throughput

Network Software

- User Level Communication Libraries e.g. MPI
- Implemented over transport layer and driver layer
- Protocols determine the syntax and functionality of the communications sessions including issues like
 - Media contention
 - Addressing
 - Fragmentation
 - Reliable Delivery
 - Ordered Delivery
 - Flow Control

Network Software

- User Level Communication Libraries e.g. MPI
- Implemented over transport layer and driver layer
- Protocols determine the syntax and functionality of the communications sessions including issues like
 - Media contention
 - Addressing
 - Fragmentation
 - Reliable Delivery
 - Ordered Delivery
 - Flow Control

Layer Functionality

- Ethernet: collision detection and avoidance
 - MAC level addressing
- IP: IP addressing (32 bit) and fragmentation
 - Also specifies transport layer (TCP, UDP, etc)
 - ARP maps IP addresses to Ethernet addresses
- TCP: reliable in-order delivery
- UDP: same functionality as IP but made available to users - unreliable datagram
 - Used for audio, video and where application provides reliable delivery
- GM: Myrinet driver, firmware, user library
 - Provides reliable in-order delivery, source routing
 - Kernel driver provides Ethernet emulation
Protocol Stacks and Drivers

- Protocol Stacks: software implementation of protocols
 - Provide interface for users e.g. socket in Unix
- Network Drivers: software that allows NIC to be used
 - Initialize NIC (registers, link auto-negotiation)
 - Send/receive frames
- Steps in sending
 - Application makes system call
 - Data processed by layers of protocol stack (e.g. TCP and IP)
 - Driver called to copy data across I/O bus and transmit
 - Some processing may be done on card to improve performance (e.g. checksum)

Receiving

- NIC receives data from link
- May do some processing on card
- NIC causes interrupt
- Kernel calls interrupt handler to copy data from NIC to system memory via I/O bus
- Protocol stack processes data and passes to application
- Interrupts cause context switches and reduce computational performance
- High-speed NIC may implement interrupt coalescing
 - Only interrupts every 10 or 100 packets
 - Reduces overhead but increases latency

Hardware Performance

- Three terms
 - Latency: time from sender to receiver
 - Important for synchronization (4-100 microseconds)
 - Bandwidth: rate of data transmission
 - Links (100Mbps – 10Gbps)
 - Switches (bandwidth and PPS)
 - Topology of network
 - Importance of each depends on application

Software Performance - Factors

- Data Copies:
 - One possibility: application to system memory to NIC
 - Optimization: copy from application to NIC directly
 - User level networking (VIA) or
 - Hardware stack processing on NIC
- TCP checksums
 - Early GE used CPU – slowed network performance and CPU overhead
- Interrupt processing
 - Interrupt coalescing
 - Protocol stack processing in NIC hardware
 - Addressed in high end NICs (interconnects such as Myrinet more so than Ethernet)
Network Choice – Cost, Performance, Servicibility

- **Cost**: $0 to $1000-$2000 per node
 - Expensive network means less nodes
- **Performance**: many applications require particular performance
- **Servicibility**: above 32 or 64 nodes some solutions may become unwieldy
- If know applications could benchmark:
 - Communications needs vary from rare to almost constantly