Rendering

- A simple X program to illustrate rendering

- The programs in this directory provide a simple x based application for us to develop some graphics routines.

- Please notice the following:
 - All points are integers.
 - The line drawing algorithm is very simple and has some definite flaws.
A simple X program
A simple X program
Syntax

- **Point**
 - `point x y` where `x` and `y` are integers

- **Line**
 - `line x1 y1 x2 y2`
 - where `x1`, `x2`, `y1` and `y2` are integers
Point and line drawing routines

- These are the *primitives* in the simple package!!

- Point drawing routines
 - point.c
 - point.h

- Line drawing routines
 - line.c
 - line.h
Other routines

- The main routine
 - `main.c`

- Include file with the definitions of the data structures
 - `mygraph.h`

- The routines to Access X functions directly.
 - `Xroutines.c`
 - `Xroutines.h`
Line Drawing and Scan Conversion

- A preliminary step to drawing lines is choosing a suitable representation for them.
- There are three possible choices which are potentially useful.
- Explicit: \(y = f(x) \)
 - \(y = m(x - x_0) + y_0 \) where \(m = \frac{dy}{dx} \)
- Parametric: \(x = f(t), \quad y = f(t) \)
 - \(x = x_0 + t(x_1 - x_0), \quad t \text{ in } [0,1] \)
 - \(y = y_0 + t(y_1 - y_0) \)
Point and line drawing routines (ctd)

- Implicit: \(f(x,y) = 0 \)
 - \(F(x,y) = (x-x_0)dy - (y-y_0)dx \)
 - if \(F(x,y) = 0 \) then \((x,y)\) is on line
 - \(F(x,y) > 0 \) then \((x,y)\) is below line
 - \(F(x,y) < 0 \) then \((x,y)\) is above line
Rasterization or Scan Conversion

- Drawing lines on a raster grid implicitly involves approximation.
- The general process: rasterization or scan-conversion.
- What is the best way to draw a line from the pixel \((x_1,y_1)\) to \((x_2,y_2)\)?
- Such a line should ideally have the following properties.
 - straight
 - pass through endpoints
 - smooth
 - independent of endpoint order
 - uniform brightness
 - brightness independent of slope
 - efficient
Line Drawing - Algorithm 1

A Straightforward Implementation

```c
Drawline(x1,y1,x2,y2)
int x1,y1,x2,y2;
{
    float y;
    int x;

    for (x=x1; x<=x2; x++) {
        y = y1 + (x-x1)*(y2-y1)/(x2-x1)
        SetPixel(x, Round(y) );
    }
}
```
Line Drawing - Algorithm 2

A Better Implementation

DrawLine(x1,y1,x2,y2)
int x1,y1,x2,y2;
{
 float m,y;
 int dx,dy,x;
 dx = x2 - x1;
 dy = y2 - y1;
 m = dy/dx;
 y = y1 + 0.5;
 for (x=x1; x<=x2; x++) {
 SetPixel(x, Floor(y));
 y = y + m;
 }
}
Line Drawing Algorithm Comparison

- Advantages over Algorithm 1
 - eliminates multiplication
 - improves speed

- Disadvantages
 - round-off error builds up
 - get pixel drift
 - rounding and floating point arithmetic still time consuming
 - works well only for $|m| < 1$
 - need to loop in y for $|m| > 1$
 - need to handle special cases
Point and line drawing routines

- Implicit: \(f(x,y) = 0 \)
 - \(F(x,y) = (x-x_0)\,dy - (y-y_0)\,dx \)
 - if \(F(x,y) = 0 \) then \((x,y)\) is on line
 - \(F(x,y) > 0 \) then \((x,y)\) is below line
 - \(F(x,y) < 0 \) then \((x,y)\) is above line
The Midpoint or Bresenham’s Algorithm

The midpoint algorithm is even better than the above algorithm in that it uses only integer calculations. It treats line drawing as a sequence of decisions. For each pixel that is drawn the next pixel will be either E or NE, as shown below.
The midpoint algorithm makes use of the implicit definition of the line, \(F(x,y) = 0 \). The N/NE decisions are made as follows.

- \(d = F(x_p + 1, y_p + 0.5) \)
 - if \(d < 0 \) line below midpoint choose E
 - if \(d > 0 \) line above midpoint choose NE

- if E is chosen
 - \(d_{\text{new}} = F(x_p + 2, y_p + 0.5) \)
 - \(d_{\text{new}} - d_{\text{old}} = F(x_p + 2, y_p + 0.5) - F(x_p + 1, y_p + 0.5) \)
 - \(\Delta d = d_{\text{new}} - d_{\text{old}} = dy \)
Midpoint Algorithm

- If NE is chosen
 - \(d_{new} = F(x_p + 2, y_p + 1.5) \)
 - \(\Delta d = dy - dx \)

- Initialization
 - \(d_{start} = F(x_0 + 1, y_0 + 0.5) = (x_0 + 1 - x_0) dy - (y_0 + 0.5 - y_0)dx \)
 \[= dy - dx/2 \]

- Integer only algorithm
 - \(F'(x,y) = 2 F(x,y) \); \(d' = 2d \)
 - \(d'_{start} = 2dy - dx \)
 - \(\Delta d' = 2\Delta d \)
Midpoint Algorithm for $x_1 < x_2$ and slope ≤ 1

drawline(x1, y1, x2, y2, colour)
int x1, y1, x2, y2, colour;
{
 int dx, dy, d, incE, incNE, x, y;

 dx = x2 - x1;
 dy = y2 - y1;
 d = 2*dy - dx;
 incE = 2*dy;
 incNE = 2*(dy - dx);
 y = y1;
 for (x=x1; x<=x2; x++) {
 setpixel(x, y, colour);
 if (d>0) {
 d = d + incNE;
 y = y + 1;
 } else {
 d = d + incE;
 }
 }
}
General Bresenham’s Algorithm

- To generalize to lines with arbitrary slope
 - consider symmetry between various octants and quadrants
 - for $m > 1$, interchange roles of x and y, that is step in y direction, and decide whether x value is above or below line
 - if $m > 1$, and right endpoint is the first point, both x and y decrease. To ensure uniqueness, independent of direction, always choose upper (or lower) point if the line goes through the mid-point
 - handle special cases without invoking algorithm: horizontal, vertical and diagonal lines
Additional Issues

- End-point order
 - cannot just interchange end-points
 - does not work when we use line styles since we need the pattern to go the same way on all segments of a polygon

- later we must deal with issue of clipping

- varying the intensity of a line with the slope
 - consider horizontal line and diagonal line
 - both have same number of pixels
 - diagonal $\sqrt{2}$ times horizontal line in length
 - intensity per unit length less for diagonal