Chapter 2: Computer-System Structures

- Computer System Operation
- I/O Structure
- Storage Structure
- Storage Hierarchy
- Hardware Protection
- Network Structure

Computer-System Architecture
Computer System Bootup

- Bootstrap Program – in ROM or EEPROM
 - Initializes Registers
 - Locates and loads into memory operating system kernel
- OS starts first process (init in Unix/Linux)
- Waits for event to occur – signalled by interrupt
 - Hardware triggered
 - Software triggered (system or monitor call)

Computer-System Operation

- I/O devices and the CPU can execute concurrently.
- Each device controller is in charge of a particular device type.
- Each device controller has a local buffer.
- CPU moves data from/to main memory to/from local buffers
- I/O is from the device to local buffer of controller.
- Device controller informs CPU that it has finished its operation by causing an interrupt.
Common Functions of Interrupts

- Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines.
- Interrupt architecture must save the address of the interrupted instruction.
- Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interrupt.
- A trap is a software-generated interrupt caused either by an error or a user request.
- A modern operating system is interrupt driven.

Interrupt Handling

- The operating system preserves the state of the CPU by storing registers and the program counter.
- Determines which type of interrupt has occurred:
 - polling
 - vectored interrupt system
- Separate segments of code determine what action should be taken for each type of interrupt
I/O Structure

- **Synchronous I/O**: After I/O starts, control returns to user program only upon I/O completion.
 - Wait instruction idles the CPU until the next interrupt
 - Wait loop (contention for memory access)
 - At most one I/O request is outstanding at a time, no simultaneous I/O processing.

- **Asynchronous I/O**: After I/O starts, control returns to user program without waiting for I/O completion.
 - *System call* – request to the operating system to allow user to wait for I/O completion.
 - *Device-status table* contains entry for each I/O device indicating its type, address, and state.
 - Operating system indexes into I/O device table to determine device status and to modify table entry to include interrupt.
Two I/O Methods

Synchronous

- User
- Requesting process waiting
- Device driver
- Interrupt handler
- Hardware
- Data transfer

Asynchronous

- User
- Requesting process
- Device driver
- Interrupt handler
- Hardware
- Data transfer

Device-Status Table

<table>
<thead>
<tr>
<th>Device</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card reader 1</td>
<td>Idle</td>
</tr>
<tr>
<td>Line printer 3</td>
<td>Busy</td>
</tr>
<tr>
<td>Disk unit 1</td>
<td>Idle</td>
</tr>
<tr>
<td>Disk unit 2</td>
<td>Idle</td>
</tr>
<tr>
<td>Disk unit 3</td>
<td>Busy</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Request for line printer
- Address: 38546
- Length: 1372

Request for disk unit 3
- File: xxx
- Operation: read
- Address: 43046
- Length: 20000

Request for disk unit 3
- File: yyy
- Operation: write
- Address: 23458
- Length: 500
Direct Memory Access Structure

- Used for high-speed I/O devices able to transmit information at close to memory speeds.
- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention.
- Only one interrupt is generated per block, rather than the one interrupt per byte.

Storage Structure

- Main memory (RAM) – only large storage media that the CPU can access directly. (volatile)
- Secondary storage – extension of main memory that provides large nonvolatile storage capacity.
- Magnetic disks – rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into **tracks**, which are subdivided into **sectors**.
 - The **disk controller** determines the logical interaction between the device and the computer.
Moving-Head Disk Mechanism

Storage Hierarchy

- Storage systems organized in hierarchy.
 - Speed
 - Cost
 - Volatility
- Caching – copying information into faster storage system; main memory can be viewed as a last cache for secondary storage.
Caching

- Use of high-speed memory to hold recently-accessed data.
- Requires a cache management policy.
- Caching introduces another level in storage hierarchy. This requires data that is simultaneously stored in more than one level to be consistent.
Migration of A From Disk to Register

- magnetic disk
- main memory
- cache
- hardware register

Hardware Protection

- Dual-Mode Operation
- I/O Protection
- Memory Protection
- CPU Protection
Dual-Mode Operation

- Sharing system resources requires operating system to ensure that an incorrect program cannot cause other programs to execute incorrectly.
- Provide hardware support to differentiate between at least two modes of operations.
 1. User mode – execution done on behalf of a user.
 2. Monitor mode (also kernel mode or system mode) – execution done on behalf of operating system.

Dual-Mode Operation (Cont.)

- Mode bit added to computer hardware to indicate the current mode: monitor (0) or user (1).
- When an interrupt or fault occurs hardware switches to monitor mode.

Privileged instructions can be issued only in monitor mode.
I/O Protection

- All I/O instructions are privileged instructions.
- Must ensure that a user program could never gain control of the computer in monitor mode (i.e., a user program that, as part of its execution, stores a new address in the interrupt vector).

Use of A System Call to Perform I/O
Memory Protection

- Must provide memory protection at least for the interrupt vector and the interrupt service routines.
- In order to have memory protection, add two registers that determine the range of legal addresses a program may access:
 - **Base register** – holds the smallest legal physical memory address.
 - **Limit register** – contains the size of the range
- Memory outside the defined range is protected.

Use of A Base and Limit Register

[Diagram showing memory addresses and ranges for jobs and the base and limit registers.]
Hardware Address Protection

- When executing in monitor mode, the operating system has unrestricted access to both monitor and user's memory.

- The load instructions for the base and limit registers are privileged instructions.
CPU Protection

- **Timer** – interrupts computer after specified period to ensure operating system maintains control.
 - Timer is decremented every clock tick.
 - When timer reaches the value 0, an interrupt occurs.
- Timer commonly used to implement time sharing.
- Time also used to compute the current time.
- Load-timer is a privileged instruction.

Network Structure

- Local Area Networks (LAN)
- Wide Area Networks (WAN)
Local Area Network Structure

Wide Area Network Structure